Vol. 21 No. 1 (2022): Revista UIS Ingenierías
Articles

Multiple Mechanical Ventilation: historical review and cost analysis

Yina Faizully Quintero-Gamboa
Universidad Santo Tomás
Carlos Andrés Aguirre-Rodríguez
Universidad Santo Tomás
Aradeisy Ibarra-Picón
Universidad Santo Tomás
Edwin Rua-Ramírez
Universidad Santo Tomás
Edwin Gilberto Medina-Bejarano
Universidade Federal de Itajubá

Published 2021-11-23

Keywords

  • Flow Division System,
  • Mechanical Ventilation,
  • Cost Analysis,
  • public health,
  • COVID-19

How to Cite

Quintero-Gamboa , Y. F. ., Aguirre-Rodríguez , C. A., Ibarra-Picón , A., Rua-Ramírez , E. ., & Medina-Bejarano , E. G. . (2021). Multiple Mechanical Ventilation: historical review and cost analysis. Revista UIS Ingenierías, 21(1), 113–126. https://doi.org/10.18273/revuin.v21n1-2022010

Abstract

In times of crisis in public health where the resources available in the hospital network are scarce and these must be used to the fullest, innovative ideas arise, which allow multiplying the use of existing resources, as artificial mechanical ventilators can be. These can be used in more than one patient, by attaching a device to distribute the mixture of air and oxygen from the ventilator being used simultaneously (multiple mechanical ventilation). This idea, although innovative, has generated controversy among the medical community, as many fear for the safety of their patients, because attaching such devices to the ventilator loses control over the mechanical ventilation variables of each patient and can only maintain general vigilance over the ventilator. These misgivings about the device have led several researchers to take on the task of verifying the reliability of this flow splitter connector. It is for this reason that this article presents a thorough review of the studies carried out on the subject and additionally shows an analysis of comparative costs between the acquisition of a mechanical ventilator and the flow division system.

Downloads

Download data is not yet available.

References

  1. Fisioterapeuta. Funciones Básicas. Sevilla, España: Ediciones Rodio, 2017.
  2. Q. Li et al., “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia,” N. Engl. J. Med., vol. 382, no. 13, pp. 1199–1207, Mar. 2020, doi: https://doi.org/10.1056/NEJMoa2001316.
  3. M. Palacios Cruz, E. Santos, M. A. Velázquez Cervantes, and M. León Juárez, “COVID-19, a worldwide public health emergency,” Rev. Clínica Española, vol. 221, no. 1, pp. 55–61, Jan. 2021, doi: https://doi.org/10.1016/j.rceng.2020.03.001.
  4. J. J. Picazo, “Vacuna frente al COVID-19,” Soc. Española Quimioter. Infecc. y vacunas, 2021.
  5. F. J. González-Melado and M. L. Di Pietro, “La vacuna frente a la COVID-19 y la confianza institucional,” Enferm. Infecc. Microbiol. Clin., Sep. 2020, doi: https://doi.org/10.1016/j.eimc.2020.08.001.
  6. Organización Panamericana de la Salud, “Preguntas frecuentes: Vacunas contra la COVID-19,” 2021.
  7. “Cronología: Rastreando el camino hacia la vacunación en América Latina,” Americas Society - Council of the Americas (AS/COA), 2021.
  8. Grupo Banco Mundial, “Población, total - Latin America & Caribbean,” Banco Mundial, 2020.
  9. World Health Organization, “Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19,” 2020.
  10. C. Aschwanden, “Five reasons why COVID herd immunity is probably impossible,” Nature, vol. 591, no. 7851, pp. 520–522, Mar. 2021, doi: https://doi.org/10.1038/d41586-021-00728-2.
  11. World Health Organization, “WHO Target Product Profiles for COVID-19 Vaccines,” 2020.
  12. Global Change Data Lab, “COVID-19 vaccine doses administered per 100 people,” in Our World In Data, 2021.
  13. D. de Salud, “Ocupación UCI por COVID-19 en Bogotá D.C.,” Alcaldía Mayor de Bogotá, 2021.
  14. “Tunja llegó al 100% de ocupación en camas UCI. Se deben extremar medidas de autocuidado,” Alcaldía Mayor de Tunja, 2021.
  15. C. Tronstad et al., “Splitting one ventilator for multiple patients -- a technical assessment,” arXiv Med. Phys., 2020.
  16. D. R. Hess and R. M. Kacmarek, Essentials of Mechanical Ventilation, Third Edit. MA, USA: McGraw-Hill Education, 2014.
  17. J. A. Guirao-Goris, A. Olmedo Salas, and E. Ferrer Ferrandis, “El artículo de revisión,” Rev. Iberoam., vol. 1, no. 1, p. 2008, 2008.
  18. J. S. Han et al., “Personalized Ventilation to Multiple Patients Using a Single Ventilator: Description and Proof of Concept,” Crit. Care Explor., vol. 2, no. 5, p. e0118, May 2020, doi: https://doi.org/10.1097/CCE.0000000000000118.
  19. J. Clay, “Ventilator Circuit Splitters - reinforced & thicker walls,” National Institutes of Health (NIH), 2020.
  20. G. Neyman and C. B. Irvin, “A Single Ventilator for Multiple Simulated Patients to Meet Disaster Surge,” Acad. Emerg. Med., vol. 13, no. 11, pp. 1246–1249, Nov. 2006, doi: https://doi.org/10.1197/j.aem.2006.05.009.
  21. L. Paladino et al., “Increasing ventilator surge capacity in disasters: Ventilation of four adult-human-sized sheep on a single ventilator with a modified circuit,” Resuscitation, vol. 77, no. 1, pp. 121–126, Apr. 2008, doi: https://doi.org/10.1016/j.resuscitation.2007.10.016.
  22. R. D. Branson, T. C. Blakeman, B. R. Robinson, and J. A. Johannigman, “Use of a Single Ventilator to Support 4 Patients: Laboratory Evaluation of a Limited Concept,” Respir. Care, vol. 57, no. 3, pp. 399–403, Mar. 2012, doi: https://doi.org/10.4187/respcare.01236.
  23. T. Tonetti et al., “One ventilator for two patients: feasibility and considerations of a last resort solution in case of equipment shortage,” Thorax, vol. 75, no. 6, pp. 517–519, Jun. 2020, doi: https://doi.org/10.1136/thoraxjnl-2020-214895.
  24. R. L. Chatburn, R. D. Branson, and U. Hatipoğlu, “Multiplex Ventilation: A Simulation-Based Study of Ventilating 2 Patients With a Single Ventilator,” Respir. Care, vol. 65, no. 7, pp. 920–931, Jul. 2020, doi: https://doi.org/10.4187/respcare.07882.
  25. F. H. C. de Jongh et al., “Ventilating two patients with one ventilator: technical setup and laboratory testing,” ERJ Open Res., vol. 6, no. 2, pp. 00256–02020, Apr. 2020, doi: https://doi.org/10.1183/23120541.00256-2020.
  26. M. A. Levin et al., “Differential Ventilation Using Flow Control Valves as a Potential Bridge to Full Ventilatory Support during the COVID-19 Crisis,” Anesthesiology, vol. 133, no. 4, pp. 892–904, Oct. 2020, doi: https://doi.org/10.1097/ALN.0000000000003473.
  27. J. Herrmann, A. Fonseca da Cruz, M. L. Hawley, R. D. Branson, and D. W. Kaczka, “Shared Ventilation in the Era of COVID-19: A Theoretical Consideration of the Dangers and Potential Solutions,” Respir. Care, vol. 65, no. 7, pp. 932–945, Jul. 2020, doi: https://doi.org/10.4187/respcare.07919.
  28. S. S. Srinivasan et al., “A rapidly deployable individualized system for augmenting ventilator capacity,” Sci. Transl. Med., vol. 12, no. 549, Jun. 2020, doi: https://doi.org/10.1126/scitranslmed.abb9401.
  29. A. L. Clarke, A. F. Stephens, S. Liao, T. J. Byrne, and S. D. Gregory, “Coping with COVID ‐19: ventilator splitting with differential driving pressures using standard hospital equipment,” Anaesthesia, vol. 75, no. 7, pp. 872–880, Jul. 2020, doi: https://doi.org/10.1111/anae.15078.
  30. M. Kaplan et al., “Cloud Computing for COVID-19: Lessons Learned From Massively Parallel Models of Ventilator Splitting,” Comput. Sci. Eng., vol. 22, no. 6, pp. 37–47, Nov. 2020, doi: https://doi.org/10.1109/MCSE.2020.3024062.
  31. B. P. Wankum et al., “Development of a multi-patient ventilator circuit with validation in an ARDS porcine model,” J. Anesth., vol. 35, no. 4, pp. 543–554, Aug. 2021, doi: https://doi.org/10.1007/s00540-021-02948-2.
  32. P. M. Garcia Eijo et al., “Exhalatory dynamic interactions between patients connected to a shared ventilation device,” PLoS One, vol. 16, no. 5, p. e0250672, May 2021, doi: https://doi.org/10.1371/journal.pone.0250672.
  33. S. M. Colombo et al., “Sharing Mechanical Ventilator: In Vitro Evaluation of Circuit Cross-Flows and Patient Interactions,” Membranes (Basel)., vol. 11, no. 7, p. 547, Jul. 2021, doi: https://doi.org/10.3390/membranes11070547.
  34. P. E. Otero et al., “Ventilator output splitting interface ‘ACRA’: Description and evaluation in lung simulators and in an experimental ARDS animal model,” PLoS One, vol. 16, no. 8, p. e0256469, Aug. 2021, doi: https://doi.org/10.1371/journal.pone.0256469.
  35. R. D. Branson, “A Single Ventilator for Multiple Simulated Patients to Meet Disaster Surge,” Acad. Emerg. Med., vol. 13, no. 12, pp. 1352–1353, Dec. 2006, doi: https://doi.org/10.1197/j.aem.2006.10.002.
  36. G. Ristagno, W. Tang, and M. H. Weil, “Reply to Letter: Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest,” Resuscitation, vol. 79, no. 1, p. 171, Oct. 2008, doi: https://doi.org/10.1016/j.resuscitation.2008.06.003.
  37. “Joint Statement on Multiple Patients Per Ventilator,” American Society of Anesthesiologists, 2020.
  38. F. Gutiérrez Muñoz, “Mechanical Ventilation,” Acta méd., vol. 28, no. 2, pp. 87–104, 2011.