Influence of fiber content and annealing on the thermal properties of a bamboo fiber reinforced biocomposite material
Published 2022-03-23
Keywords
- polypropylene,
- fibers,
- bamboo,
- biocomposite,
- degree of crystallinity
- annealing,
- differential scanning calorimetry,
- DSC,
- melting temperature,
- crystallization temperature ...More
How to Cite
Copyright (c) 2022 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In the present investigation, the effects of fiber content (20, 30 and 40 wt%) and annealing heat treatment on the thermal properties of the biocomposite material formed by an isotactic polypropylene polymeric matrix (iPP) reinforced with short bamboo fibers (PP/BF) were studied. The coupling agent was iPP with grafting of maleic anhydride molecules (MAPP). The Differential Scanning Calorimetry (DSC) technique was used to determine the melting temperature (Tm), crystallization temperature (Tc), and degree of crystallinity (Xc) of the biocomposites. The melting temperature of pure PP was not significantly affected by the presence of bamboo fibers. However, the degree of crystallinity of PP increased with fiber content. The annealing heat treatment caused an increase in the Tm of pure PP and PP/BF. The composite with 20 wt% fiber content (PP/20F) annealed achieved the highest Xc (37,47 %). The Tc of polypropylene increased with the presence of fibers, and the PP/20F composite reached the highest value (115 °C). Also, the study of the Tm of the biocomposites in amorphous state was carried out, and it was observed that the sample with a fiber content of 30 wt% presented an endothermic peak at a temperature of approximately 168 °C.
Downloads
References
- D. Rajak, D. Pagar, P. Menezes, E. Linul, “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications”, Polymers, vol. 11, no. 10, p. 1667, 2019, doi: https://doi.org/10.3390/polym11101667
- P. Lokesh, T. S. A. Surya Kumari, R. Gopi, G. Babu Loganathan, “A study on mechanical properties of bamboo fiber reinforced polymer composite”, Mater. Today:. Proc., vol. 22, pp. 897-903, 2020, doi: https://doi.org/10.1016/j.matpr.2019.11.100
- K. Anbukarasi, K. Anbukarasi, S. Kalaiselvam, S. Kalaiselvam, “Thermal and mechanical behaviors of biorenewable fibers-based polymer composites”, en Handbook of Composites from Renewable Materials, Beverly, MA 01915, USA: Scrivener Publishing LLC, 2017, pp. 491-519, doi: https://doi.org/10.1002/9781119441632.ch81
- A. Orue, J. Anakabe, A. M. Zaldua-Huici, A. Eceiza, A. Arbelaiz, “Preparation and characterization of composites based on poly(lactic acid)/poly(methyl methacrylate) matrix and sisal fiber bundles: The effect of annealing process”, J. Thermoplast. Compos. Mater., p. 089270572093078, 2020, doi: https://doi.org/10.1177/0892705720930780
- T. Nishino, “Preparation, microstructure, and properties of biofibers”, en Polym. Compos., Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2013, pp. 109-131, doi: https://doi.org/10.1002/9783527674220.ch3
- J. Girones, L. T. T. Vo, J.-M. Haudin, L. Freire, P. Navard, “Crystallization of polypropylene in the presence of biomass-based fillers of different compositions”, Polymer, vol. 127, pp. 220-231, 2017, doi: https://dx.doi.org/10.1016/j.polymer.2017.09.006
- J.V. Montesdeoca-Contreras, C.A. Paltán-Zhingre, T.F. Muñoz-Cuenca, J.I. Fajardo-Seminario, L.M. López-López, D.R. Lasso-Lazo, “Study of natural fibers as filler in a polymeric matrix to make environment friendly materials”, en 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), St. Petersburg, Russia, 2015, pp. 332-335, doi: https://doi.org/10.1109/EIConRusNW.2015.7102292
- P. Chaowana, “Bamboo: an alternative raw material for wood and wood-based composites”, Journal of Materials Science Research, vol. 2, no. 2, pp. 90-102, 2013, doi: https://doi.org/10.5539/jmsr.v2n2p90
- H. Sakaray, N.V. Vamsi Krishna Togati, I.V. Ramana Reddy, “Investigation on properties of bamboo as reinforcing material in concrete”, International Journal of Engineering Research and Applications, vol. 2, no. 1, pp. 77-83, 2012, Disponible en: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.299.5791&rep=rep1&type=pdf
- L. Osorio, E. Trujillo, A.W. Van Vuure, I. Verpoest, “Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites”, J. Reinf. Plast. Compos., vol. 30, no. 5, pp. 396-408, 2011, doi: https://doi.org/10.1177/0731684410397683
- X. Londoño, G.C. Camayo, N.M. Riaño, Y. López, “Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms”, Bamboo Science and Culture: The Journal of the American Bamboo Society, vol. 16, no. 1, pp. 18-31, 2002.
- W. Liese, The Anatomy of Bamboo Culms. Boston, USA: Brill, Academic Publishers, 1998, doi: https://doi.org/10.1163/9789004502468
- A. Ashori, S. Sheshmani, F. Farhani, “Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes”, Carbohydr. Polym., vol. 92, no. 1, pp. 865-871, 2013, doi: https://doi.org/10.1016/j.carbpol.2012.10.010
- N. Nayak, H.N. Reddappa, R. Suresh, R. Kumar, “The effect of reinforcing sisal fibers on the mechanical and thermal properties of polypropylene composites”, J. Mater. Environ. Sci., vol. 10, no. 12, pp. 1238-1249, 2019.
- Y. Wang, L. Cheng, X. Cui, W. Guo, “Crystallization behavior and properties of glass fiber reinforced polypropylene composites”, Polymers, vol. 11, no. 7, p. 1198, 2019, doi: https://doi.org/10.3390/polym11071198
- N. Z. M. Zuhudi, K. Jayaraman, R. J. T. Lin, “Mechanical, Thermal and Instrumented Impact Properties of Bamboo Fabric-Reinforced Polypropylene Composites”, Polym. Polym. Compos., vol. 24, no. 9, pp. 755-766, 2016, doi: https://doi.org/10.1177/096739111602400912
- C.-Y. Hsu, T.-C. Yang, T.-L. Wu, K.-C. Hung, J.-H. Wu, “The influence of bamboo fiber content on the non-isothermal crystallization kinetics of bamboo fiber-reinforced polypropylene composites (BPCs)”, Holzforschung, vol. 72, no. 4, pp. 329-336, 2018.
- S. Ying, C. Wang, Q. Lin, “Effects of heat treatment on the properties of bamboo fiber/polypropylene composites”, Fibers Polym., vol. 14, no. 11, pp. 1894-1898, 2013, doi: https://doi.org/10.1007/s12221-013-1894-5
- J. Follrich, U. Müller, W. Gindl, “Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer”, Holz als Roh- und Werkstoff, vol. 64, no. 5, pp. 373-376, 2006, doi: https://dx.doi.org/10.1007/s00107-006-0107-y
- D. Ferrer-Balas, M. L. Maspoch, A. B. Martínez, O. O. Santana, “Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films”, Polymer, vol. 42, no. 4, pp. 1697-1705, 2001, doi: https://doi.org/10.1016/S0032-3861(00)00487-0
- Y. Mi, X. Chen, Q. Guo, “Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology”, J. Appl. Polym. Sci., vol. 64, no. 7, pp. 1267-1273, 1998, doi: https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1267::AID-APP4>3.0.CO;2-H
- M. Rodríguez, “Evaluación de materiales compuestos por inyección a partir de fibras procedentes de la biomasa de maíz (Zea mays L.) y polipropileno”, tesis doctoral, Universidad de Girona, 2014.
- Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics - Part 1: Standard method, ISO 1133-1:2011, 2011.
- Standard Test Method for Tensile Properties of Plastics, ASTM D638-03, 2003, doi: https://doi.org/10.1520/D0638-03
- E. Blanco, J. Fajardo, E. Carrasquero, C. Urbina, J. Balbino León, “Estudio de las propiedades a tensión de un material biocompuesto reforzado con haces de fibras cortas de bambú”, Rev. UIS Ing., vol. 19, no. 3, pp. 163-175, 2020, doi: https://doi.org/10.18273/revuin.v19n3-2020016
- R. H. Glaser, L. Mandelkern, “On the fractionation of homopolymers during crystallization from the pure melt”, J. Polym. Sci., Part B: Polym. Phys., vol. 26, no. 2, pp. 221-234, 1988, doi: https://doi.org/10.1002/polb.1988.090260201
- S.-Y. Lee, I.-A. Kang, B.-S. Park, G.-H. Doh, B.-D. Park, “Effects of Filler and Coupling Agent on the Properties of Bamboo Fiber-Reinforced Polypropylene Composites”, J. Reinf. Plast. Compos., vol. 28, no. 21, pp. 2589-2604, 2008, doi: https://doi.org/10.1177/0731684408094070
- S. K. Nayak, S. Mohanty, S. K. Samal, “Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites”, Materials Science and Engineering: A, vol. 523, no. 1-2, pp. 32-38, 2009, doi: https://doi.org/10.1016/j.msea.2009.06.020
- J. Lisperguer, X. Bustos, Y. Saravia, C. Escobar, and H. Venegas, “Efecto de las características de harina de madera en las propiedades físico-mecánicas y térmicas de polipropileno reciclado”, Maderas. Cienc. tecnol., vol. 15, no. 3, pp. 321-336, 2013, doi: https://doi.org/10.4067/S0718-221X2013005000025
- R. Young, P. Lovell, Introduction to Polymers. London, UK: Chapman & Hall, 2011.
- S. Caveda, “Copolímeros y terpolímeros de polipropileno: influencia de la estructura molecular, las condiciones de cristalización y la adición de un beta-nucleante en las propiedades macroscópicas”, tesis doctoral, Universidad Rey Juan Carlos, 2012.
- C. Marco, C. Blancas, “Transiciones de fase en polipropileno isotáctico de reactor y de reología controlada, nucleados en ácido pimélico, bajo cristalización dinámica”, Revista Iberoamericana de Polímeros, vol. 7, no. 1, pp. 43-66, 2006.
- J. Fabra, M. Amparo, “Caracterización de polipropilenos técnicos modificados con talco para su uso en parachoques”, trabajo de fin de grado, Universidad Politécnica de Valencia, 2014.