Vol. 21 No. 2 (2022): Revista UIS Ingenierías
Articles

Biodiesel production by in situ transesterification of Jatropha Curcas L. seeds

Edward Enrique Gomez-Delgado
Universidad de Buenos Aires
Dra. Debora
Nabarlatz
Bio
Fredy Augusto Avellaneda-Vargas
Universidad Industrial de Santander

Published 2022-03-15

Keywords

  • Biofuels,
  • Biodiesel,
  • Transesterification in-situ,
  • Jatropha Curcas L.,
  • Bioenergy,
  • Fuels,
  • Experimental design,
  • Reactive extraction,
  • FAME,
  • Response surface
  • ...More
    Less

How to Cite

Gomez-Delgado, E. E. ., Nabarlatz, D. A. ., & Avellaneda-Vargas, F. A. (2022). Biodiesel production by in situ transesterification of Jatropha Curcas L. seeds. Revista UIS Ingenierías, 21(2), 21–38. https://doi.org/10.18273/revuin.v21n2-2022003

Abstract

The main disadvantage of using biodiesel is its price, which is due to high costs of raw material and oil conditioning to obtain biodiesel by conventional transesterification, which prevents it from competing with fossil fuels. An alternative method was investigated to obtain biodiesel by in-situ transesterification or reactive extraction (RE) from Jatropha Curcas L. seeds. This alternative process seeks to reduce stages in the production process, and thus, reduce operational costs with respect to the conventional method. The influence of temperature, catalyst mass concentration (g NaOH/g oil), and methanol to oil molar ratio, in order to maximize yield and FAME concentration of biodiesel obtained, was determined through a central composite design (DCC) with response surface methodology. The most appropriate conditions to obtain biodiesel by in-situ transesterification occur at 44°C, with a mass concentration of catalyst 1,2 g NaOH/100 g oil, and with a methanol to molar ratio of 135:1 with the presence of hexane, keeping constant stirring speed (635 rpm) and reaction time (3h). In these conditions, a yield of 71,99% w/w (g biodiesel/g oil) and a FAME content of 90,36% w/w (g FAME/g biodiesel) were reached. The results of this study provide an alternative process for obtaining biodiesel without the need of extraction and pretreatment stages employed in the traditional method, in addition to reducing excess washes in the conventional process, which increase process costs and environmental impact.

Downloads

Download data is not yet available.

References

  1. S. N. Gebremariam, J. M. Marchetti, “Economics of biodiesel production: Review,” Energy Conversion and Management, vol. 168. pp. 74-84, 2018, doi: https://doi.org/10.1016/j.enconman.2018.05.002
  2. S. Thapa, N. Indrawan, P. R. Bhoi, “An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines,” Environmental Technology and Innovation, vol. 9, pp. 210-219, 2018, doi: https://doi.org/10.1016/j.eti.2017.12.003
  3. J. O. Virgínio e Silva, M. F. Almeida, M. da Conceição Alvim Ferraz, J. M. Dias, “Integrated production of biodiesel and bioethanol from sweet potato,” Renewable Energy, vol. 124, pp. 114–120, 2018, doi: https://doi.org/10.1016/j.renene.2017.07.052
  4. I. Ambat, V. Srivastava, M. Sil-lanpää, “Recent advancement in bio-diesel production methodologies using various feedstock: A review,” Renewable and Sustainable Energy Reviews, vol. 90. pp. 356-369, 2018. doi: https://doi.org/10.1016/j.rser.2018.03.069
  5. S. Sharma, A. Kundu, S. Basu, N. P. Shetti, T. M. Aminabhavi, “Sustainable environmental management and related biofuel technologies,” Journal of Environmental Manage-ment, vol. 273, p. 111096, 2020, doi: https://doi.org/10.1016/j.jenvman.2020.111096
  6. Unidad de Planeación Minero-Energética UPME, “Proyección de la demanda de energía eléctrica y gas natural en Colombia 2021-2035,” Bogotá, 2020.
  7. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, S. Mekhilef, “A com-prehensive review on biodiesel as an alternative energy resource and its characteristics,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2070-2093, 2012, doi: https://doi.org/10.1016/j.rser.2012.01.003
  8. S. Das, “The National Policy of bio-fuels of India – A perspective,” Energy Policy, vol. 143, p. 111595, 2020, doi: https://doi.org/10.1016/j.enpol.2020.111595
  9. D. Andrey, H. Susa, “Analysis of the power and torque performance of a diesel engine operating with palm biodiesel blends,” Ingeniería, vol. 25, no. 3, 2020, doi: https://doi.org/10.14483/23448393.15676
  10. A. E. F. Abomohra, M. Elsayed, S. Esakkimuthu, M. ElSheekh, D. Hanelt, “Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives,” Progress in Energy and Combustion Science, vol. 81, p. 100868, 2020, doi: https://doi.org/10.1016/j.pecs.2020.100868
  11. I. Amalia Kartika, M. Yani, D. Ariono, P. Evon, L. Rigal, “Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step,” Fuel, vol. 106, pp. 111-117, 2013, doi: https://doi.org/10.1016/j.fuel.2013.01.021
  12. S. K. Duran, “A review on oil extraction and biofuels production from various materials,” Materials Today: Proceedings, vol. 26, no. 2, pp. 261-265, 2019, doi: https://doi.org/10.1016/j.matpr.2019.11.223
  13. F. H. Kasim and A. P. Harvey, “Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production,” Chemical Engineering Journal, vol. 171, no. 3, pp. 1373-1378, 2011, doi: https://doi.org/10.1016/j.cej.2011.05.050
  14. A. A. Abou Kheira, N. M. M. Atta, “Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics,” Biomass and Bioenergy, vol. 33, no. 10, pp. 1343-1350, 2009, doi: https://doi.org/10.1016/j.biombioe.2008.05.015
  15. X. Denga, J. Han, F. Yiin, “Net Energy, CO2 Emission and Land based Cost-Benefit Analyses of Jatropha Biodiesel: A case study of the Panzhihua Region of Sichuan Province in China,” Energies, vol. 5, pp. 2150–2164, 2012.
  16. S. H. Shuit, K. T. Lee, A. H. Kamaruddin, S. Yusup, “Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel,” Fuel, 2010, doi: https://doi.org/10.1016/j.fuel.2009.07.011
  17. N. Tuntiwiwattanapun, P. Usapein, C. Tongcumpou, “The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in situ transesterification process,” Energy for Sustainable Development, vol. 40, pp. 50–58, 2017, doi: https://doi.org/10.1016/j.esd.2017.07.002
  18. B. Kim et al., “Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects,” Algal Research, vol. 41, no. November 2018, p. 101557, 2019, doi: https://doi.org/10.1016/j.algal.2019.101557
  19. A. Martínez, G. E. Mijangos, I. C. Romero Ibarra, R. Hernández Altamirano, V. Y. Mena Cervantes, “In situ transesterification of Jatropha curcas L. seeds using homogeneous and heterogeneous basic catalysts,” Fuel, vol. 235, no. July 2018, pp. 277-287, 2019, doi: https://doi.org/10.1016/j.fuel.2018.07.082
  20. Y. Liu, H. Lu, W. Jiang, D. Li, S. Liu, B. Liang, “Biodiesel production from crude jatropha curcas L. oil with trace acid catalyst,” Chinese Journal of Chemical Engineering, vol. 20, no. 4, pp. 740-746, 2012, doi: https://doi.org/10.1016/S1004-9541(11)60243-7
  21. A. Martínez-Silveira, R. Villarreal, G. Garmendia, C. Rufo, S. Vero, “Process conditions for a rapid in situ transesterification for biodiesel production from oleaginous yeasts,” Electronic Journal of Biotechnology, vol. 38, pp. 1-9, 2019, doi: https://doi.org/10.1016/j.ejbt.2018.11.006
  22. J. Park, B. Kim, J. W. Lee, “In situ transesterification of wet spent coffee grounds for sustainable biodiesel production,” Bioresource Technology, vol. 221, pp. 55-60, 2016, doi: https://doi.org/10.1016/j.biortech.2016.09.001
  23. G. Hincapié, F. Mondragón, and D. López, “Conventional and in situ transesterification of castor seed oil for biodiesel production,” Fuel, vol. 90, no. 4, pp. 1618-1623, 2011, doi: https://doi.org/10.1016/j.fuel.2011.01.027
  24. B. Chidambaranathan, S. Gopinath, R. Aravindraj, A. Devaraj, S. Gokula Krishnan, J. K. S. Jeevaananthan, “The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review,” Materials Today: Proceedings, vol 33, no. 1, pp 84-92, 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.205
  25. J. Huang, H. Xiao, X. Yang, F. Guo, X. Hu, “Effects of methanol blending on combustion characteristics and various emissions of a diesel engine fueled with soybean biodiesel,” Fuel, vol. 282, no. July, p. 118734, 2020, doi: https://doi.org/10.1016/j.fuel.2020.118734
  26. M. N. Siddiquee, S. Rohani, “Experimental analysis of lipid extraction and biodiesel production from wastewater sludge,” Fuel Processing Technology, vol. 92, no. 12, pp. 2241-2251, 2011, doi: https://doi.org/10.1016/j.fuproc.2011.07.018
  27. O. D. Samuel and O. U. Dairo, “A Critical Review of In-situ Transesterification Process for Biodiesel Production,” The pacific journal of science and technology, vol. 13, no. 2, 2012.
  28. A. W. Go, T. Y. N. Pham, Y. H. Ju, R. C. Agapay, A. E. Angkawijaya, K. L. Quijote, “Extraction of lipids from posthydrolysis spent coffee grounds for biodiesel production with hexane as solvent: Kinetic and equilibrium data,” Biomass and Bioenergy, vol. 140, no. February, p. 105704, 2020, doi: https://doi.org/10.1016/j.biombioe.2020.105704
  29. F. Avellaneda, “Producción y caracterización de biodiesel de palma y de aceite reciclado mediante un proceso batch y un proceso continuo con un reactor helicoidal,” Universitatrovira i Virgili, 2010.
  30. S. Y. Lee, S. J. Park, “A review on solid adsorbents for carbon dioxide capture,” Journal of Industrial and Engineering Chemistry, vol. 23, pp. 1-11, 2015, doi: https://doi.org/10.1016/j.jiec.2014.09.001
  31. M. Y. Koh, T. I. Tinia, “A review of biodiesel production from Jatropha curcas L. oil,” Renewable and Sustainable Energy Reviews, vol. 15, no. 5. pp. 2240-2251, 2011, doi: https://doi.org/10.1016/j.rser.2011.02.013
  32. P. Verma, M. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 1063-1071, 2016.
  33. H. Jaliliannosrati, N. A. S. Amin, A. Talebian Kiakalaieh, I. Noshadi, “Microwave assisted biodiesel pro-duction from Jatropha curcas L. seed by two step in situ process: Optimization using response surface methodology,” Bioresource Technology, vol. 136, pp. 565-573, 2013, doi: https://doi.org/10.1016/j.biortech.2013.02.078
  34. M. R. Sayed et al., “Synthesis of advanced MgAlLDH based geopolymer as a potential catalyst in the conversion of waste sunflower oil into biodiesel: Response surface studies,” Fuel, vol. 282, no. July, p. 118865, 2020, doi: https://doi.org/10.1016/j.fuel.2020.118865
  35. P. Dey, S. Ray, A. Newar, “De fining a waste vegetable oil-biodiesel based diesel substitute blend fuel by response surface optimization of density and calorific value,” Fuel, vol. 283, no. June 2020, p. 118978, 2021, doi: https://doi.org/10.1016/j.fuel.2020.118978
  36. C. S. Latchubugata, R. V. Kondapaneni, K. K. Patluri, U. Virendra, S. Vedantam, “Chemical Engineering Research and Design Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst,” Chemical Engineering Research and Design, vol. 135, pp. 129-139, 2018, doi: https://doi.org/10.1016/j.cherd.2018.05.022
  37. M. Tongroon, A. Suebwong, M. Kananont, J. Aunchaisri, N. Chollacoop, “High quality jatropha biodiesel (H-FAME) and its application in a common rail diesel engine,” Renewable Energy, vol. 113, pp. 660-668, 2017, doi: https://doi.org/10.1016/j.renene.2017.06.006
  38. S. Hamdan, W. Chong, J. H. Ng, C. Chong, S. Rajoo, “A study of the tribological impact of biodiesel dilution on engine lubricant properties,” Process Safety and Environmental Protection, vol. 112, pp. 288-297, 2017.
  39. N. Zainal, N. Zulkifli, M. Gulzar, H. Masjuki, “A review on the chemistry, production and technological potential of bio based lubricants,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 80-102, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.004
  40. M. Said, A. Elsayed, “The use of palm oil fatty acid methyl ester as a base fluid for a flat rheology high performance drilling fluid,” Journal of Petroleum Science and Engineering, vol. 166, pp. 969-983, 2018.
  41. J. McNutt, H. Quan, “Development ob biolubricants from vegetable oils via chemical modification,” Journal of Industrial and Engineering Chemistry, vol. 36, pp. 1-12, 2016, doi: https://doi.org/10.1016/j.jiec.2016.02.008
  42. R. Caenn, H. Darley, R. George, R. Gray, Compossition and properties of Drilling and Completion fluids. USA: Gulf professional publishing, 2016, doi: https://doi.org/10.1016/B978-0-12-804751-4.00001-8
  43. S. Pradhan, C. S. Madankar, P. Mohanty, S. N. Naik, “Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology,” Fuel, vol. 97, pp 848-855, 2012, doi: https://doi.org/10.1016/j.fuel.2012.02.052
  44. W. N. W. A. Rashid, Y. Uemura, K. Kusakabe, N. B. Osman, B. Abdullah, “Synthesis of Biodiesel from Palm Oil in Capillary Millichannel Reactor: Effect of Temperature, Methanol to Oil Molar Ratio, and KOH Concentration on FAME Yield,” Procedia Chemistry, vol. 9, pp. 165-171, 2014, doi: https://doi.org/10.1016/j.proche.2014.05.020
  45. V. Aslan, T. Eryilmaz, “Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH,” Energy, vol. 209, p. 118386, 2020, doi: https://doi.org/10.1016/j.energy.2020.118386
  46. G. Knothe and K. Steidley, “The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition,” Fuel Processing Technology, vol. 177, pp. 75-80, 2018.
  47. E. A. Hernández, G. Sánchez-Reyna, J. Ancheyta, “Evaluation of mixing rules to predict viscosity of petrodiesel and biodiesel blends,” Fuel, vol. 283, no. June 2020, p. 118941, 2021, doi: https://doi.org/110.1016/j.fuel.2020.118941
  48. M. Ghiasy Oskoee, H. Hatterman Valenti, E. Monono, and M. Agha Alikhani, “Blessed thistle a promising species on North Dakota, USA marginal lands: Agronomic productivity, oil properties and bio diesel potential,” Ecological Engineering, vol. 155, no. 2019, p. 105908, 2020, doi: https://doi.org/110.1016/j.ecoleng.2020.105908