Vol. 21 No. 3 (2022): Revista UIS Ingenierías
Articles

Spectral clustering and fuzzy similarity measure for images segmentation

Juan Pablo Rodríguez-Fernández
Universidad del Cauca
Pablo Lizarazo-Chilamá
Universidad del Cauca
Elena Muñoz-España
Universidad del Cauca
Juan Fernando Flórez-Marulanda
Universidad del Cauca

Published 2022-06-22

Keywords

  • fuzzy similarity measure,
  • image segmentation,
  • spectral clustering,
  • superpixels,
  • computational load,
  • computational cost
  • ...More
    Less

How to Cite

Rodríguez-Fernández, J. P., Lizarazo-Chilamá, P., Muñoz-España, E., & Flórez-Marulanda, J. F. (2022). Spectral clustering and fuzzy similarity measure for images segmentation. Revista UIS Ingenierías, 21(3), 9–20. https://doi.org/10.18273/revuin.v21n3-2022002

Abstract

In image segmentation algorithms using spectral clustering, due to the size of the images, the computational load for the construction of the similarity matrix and the solution to the eigenvalue problem for the Laplacian matrix is high. Furthermore, the Gaussian kernel similarity measure is the most used, but it presents problems with irregular data distributions. This work proposes to perform a pre-segmentation or decimation by superpixels with the Simple Linear Iterative Clustering algorithm to reduce the computational cost, and to build the similarity matrix with a fuzzy measure based on the Fuzzy C-Means classifier, providing the algorithm a greater robustness against images with complex distributions and by spectral clustering the final segmentation is determined. Experimentally, it was found that the proposed approach obtains adequate segmentations, good clustering results and a comparable precision with respect to five algorithms; measuring performance under four determined validation metrics.

Downloads

Download data is not yet available.

References

  1. D. Kaur, Y. Kaur, “Various Image Segmentation Techniques: A Review”, Int. J. Comput. Sci. Mob. Comput., vol. 3, no. 5, pp. 809-814, 2014.
  2. N. R. Pal, S. K. Pal, “A review on image segmentation techniques”, Pattern Recognit., vol. 26, no. 9, pp. 1277-1294, 1993, doi: https://doi.org/10.1016/0031-3203(93)90135-J
  3. F. Sultana, A. Sufian, P. Dutta, “Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey”, Knowledge-Based Systems, vol 201-202, 2020, doi: https://doi.org/10.1016/j.knosys.2020.106062
  4. C.L. Chowdhary, D.P. Acharjya, “Segmentation and Feature Extraction in Medical Imaging: A Systematic Review”, Procedia Computer Science, vol 167, pp 26-36, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.179
  5. S. Zeng, R. Huang, Z. Kang, N. Sang, “Image segmentation using spectral clustering of Gaussian mixture models”, Neurocomputing, vol. 144, pp. 346-356, Nov, 2014. doi: https://doi.org/10.1016/j.neucom.2014.04.037
  6. X. Wang, Z. Yang, X. Yue, H. Wang, “A Group Norm Regularized Factorization Model for Subspace Segmentation”, IEEE Transactions on Cybernetics, vol 8, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3000816
  7. M. Angulakshmi, G.G. Lakshmi Priya, “Walsh Hadamard Transform for Simple Linear Iterative Clustering (SLIC) Superpixel Based Spectral Clustering of Multimodal MRI Brain Tumor Segmentation”, IRBM, vol 40, no. 5, pp. 253-262, 2019, doi: https://doi.org/10.1016/j.irbm.2019.04.005
  8. M. Angulakshmi, G.G. Lakshmi Priya. “Brain tumour segmentation from MRI using superpixels based spectral clustering”, Journal of King Saud University - Computer and Information Sciences, 2018, doi: https://doi.org/10.1016/j.jksuci.2018.01.009
  9. N. He, X. Zhang, J. Zhao, et al. “Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity”, Int. Conf. Digital Image Process., Hong Kong, 2017, doi: https://doi.org/10.1117/12.2281942
  10. M. Spindler, C. M. Thiel, “Quantitative magnetic resonance imaging for segmentation and white matter extraction of the hypothalamus,” Journal of Neuroscience Research, vol. 100, no. 2, pp. 564-577, 2022, doi: https://doi.org/10.1002/jnr.24988
  11. J. Hou, W. Liu, X. E, H. Cui, “Towards parameter-independent data clustering and image segmentation”, Pattern Recognit., vol. 60, pp. 25-36, 2016, doi: https://doi.org/10.1016/j.patcog.2016.04.015
  12. N. Qiao, L. Di, “An improved method of linear spectral clustering”, Multimedia Tools and Applications 2021, vol. 81, no. 1, pp. 1287-1311, 2021, doi: https://doi.org/10.1007/s11042-021-11459-x
  13. X. L. Jiang, Q. Wang, B. He, S. J. Chen, B. L. Li, “Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints”, Neurocomputing, vol. 207, pp. 22-35, 2016, doi: https://doi.org/10.1016/j.neucom.2016.03.046
  14. T. Inkaya, “A parameter-free similarity graph for spectral clustering”, Expert Syst. Appl., vol. 42, no. 24, pp. 9489-9498, Dec. 2015, doi: https://doi.org/10.1016/j.eswa.2015.07.074
  15. A. Mur, R. Dormido, N. Duro, S. Dormido, J. Vega. “Determination of the optimal number of clusters using a spectral clustering optimization”, Expert Systems with Applications, vol 65, pp 304-314, 2016, doi: https://doi.org/10.1016/j.eswa.2016.08.059
  16. F. Zhao, H. Liu, L. Jiao, “Spectral clustering with fuzzy similarity measure”, Digit. Signal Processing, vol. 21, no. 6, pp. 701-709, 2011, doi: https://doi.org/10.1016/j.dsp.2011.07.002
  17. Y. Yang, Y. Wang, “Simulated annealing spectral clustering algorithm for image segmentation”, J. Syst. Eng. Electron., vol. 25, no. 3, pp. 514-522, 2014, doi: https://doi.org/10.1109/JSEE.2014.00059
  18. H. Chang, D.Y Yeung, “Robust path-based spectral clustering with application to image segmentation”, Tenth IEEE Int. Conf. Comput. Vis, vol. 1, Beijing, 2005, pp 278-285, doi: https://doi.org/10.1109/ICCV.2005.210
  19. X. Fan, L. Ju, X. Wang, S. Wang, “A fuzzy edge-weighted centroidal Voronoi tessellation model for image segmentation”, Computers and Mathematics with Applications, vol. 71, no. 11, pp. 2272-2284, 2016. doi: https://doi.org/10.1016/j.camwa.2015.11.003
  20. L. Fang, X. Wang, Z. Lian, Y. Yao, and Y. Zhang, “Supervoxel-based brain tumor segmentation with multimodal MRI images,” Signal, Image and Video Processing, vol. 16, no. 5, pp. 1215-1223, 2022, doi: https://doi.org/10.1007/s11760-021-02072-4
  21. E. Zimudzi, I. Sanders, N. Rollings, C. Omlin, “Segmenting mangrove ecosystems drone images using SLIC superpixels,” Geocarto International, vol. 34, no. 14, pp. 1648-1662, 2018, doi: https://doi.org/10.1080/10106049.2018.1497093
  22. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, “SLIC Superpixels”, EPFL Tech. Rep. 149300, June, p. 15, 2010.
  23. X. D. Bai, Z. G. Cao, Y. Wang, M. N. Ye, L. Zhu, “Image segmentation using modified SLIC and Nyström based spectral clustering”, Optik, vol. 125, no. 16, pp. 4302-4307, 2014, doi: https://doi.org/10.1016/j.ijleo.2014.03.035
  24. Z. Li, J. Chen, “Superpixel segmentation using Linear Spectral Clustering”, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1356-1363, doi: https://doi.org/10.1109/CVPR.2015.7298741
  25. Y. Yang, Y. Wang, X. Xue, “A novel spectral clustering method with superpixels for image segmentation”, Optik, vol. 127, no. 1, pp. 161-167, 2016, doi: https://doi.org/10.1016/j.ijleo.2015.10.053
  26. A. Schick, M. Fischer, R. Stiefelhagen, “An evaluation of the compactness of superpixels”, Pattern Recognit. Lett., vol. 43, no. 1, pp. 71-80, 2014, doi: https://doi.org/10.1016/j.patrec.2013.09.013
  27. K. B. Schloss, L. Lessard, C. Racey, A. C. Hurlbert, “Modeling color preference using color space metrics”, Vision Research, vol 151, pp. 99-116, 2018, doi: https://doi.org/10.1016/j.visres.2017.07.001
  28. S. E. Schaeffer, “Graph clustering”, Computer Science Review, vol. 1, no. 1, pp. 27-64, 2007, doi: https://doi.org/10.1016/j.cosrev.2007.05.001
  29. D. Martin, C. Fowlkes, D. Tal, J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics”, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 2001, pp. 416-423, doi: https://doi.org/10.1109/ICCV.2001.937655
  30. J. Shi, J. Malik, “Normalized cuts and image segmentation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, Aug. 2000. doi: https://doi.org/10.1109/34.868688
  31. C. Fowlkes, S. Belongie, J. Malik, “Efficient spatiotemporal grouping using the Nyström method”, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 2001, pp. I-I, doi: https://doi.org/10.1109/CVPR.2001.990481
  32. Y. Ng. Andrew, M. I Jordan, Y. Weiss, “On Spectral Clustering: Analysis and an algorithm”, Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. January 2001, pp. 849-856.
  33. N. Seo, “Normalized Cuts and Image Segmentation,” 2006 [En línea]. Disponible en:http://note.sonots.com/SciSoftware/NcutImageSegmentation.html.
  34. X. D. Bai, Z. G. Cao, Y. Wang, M. N. Ye, L. Zhu, “Image segmentation using modified SLIC and Nyström based spectral clustering”, Optik (Stuttg)., vol. 125, no. 16, pp. 4302-4307, 2014, doi: https://doi.org/10.1016/j.ijleo.2014.03.035
  35. H. Zhang, J. E. Fritts, S. A. Goldman, “Image segmentation evaluation: A survey of unsupervised methods”, Comput. Vis. Image Underst., vol. 110, no. 2, pp. 260-280, 2008, doi: https://doi.org/10.1016/j.cviu.2007.08.003
  36. T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Data Mining Researchers ROC Graphs: Notes and Practical Considerations for Data Mining Researchers”, ReCALL, p. 27, 2003.
  37. R. Iakymchuk, “Performance prediction through time measurements”, International Conference on High Performance Computing, Kyiv, Ukraine, October 12-14, 2011.
  38. R. Guerequeta, A. Vallecillo, Técnicas de diseño de algoritmos. Servicio de Publicaciones e Intercambio Científico de la Universidad de Málaga, 2000.