Vol. 21 No. 3 (2022): Revista UIS Ingenierías
Articles

Performance Comparison of Electrical Indicators for Detection of PID in PV panels

Jhoan Sebastian Parra-Quiroga
Universidad del Valle
Édinson Franco-Mejía
Universidad del Valle
Martha Lucía Orozco-Gutiérrez
Universidad del Valle
Juan David Bastidas-Rodriguez
Universidad Nacional de Colombia

Published 2022-06-15

Keywords

  • Potential Induced Degradation (PID),
  • degradation detection,
  • electrical indicators,
  • single diode model,
  • I-V curve,
  • PV panel,
  • temperature,
  • irradiance,
  • fill factor,
  • shunt resistance,
  • current ratio,
  • open-circuit voltage
  • ...More
    Less

How to Cite

Parra-Quiroga, J. S., Franco-Mejía , Édinson, Orozco-Gutiérrez , M. L. ., & Bastidas-Rodriguez, J. D. . (2022). Performance Comparison of Electrical Indicators for Detection of PID in PV panels. Revista UIS Ingenierías, 21(3), 21–32. https://doi.org/10.18273/revuin.v21n3-2022003

Abstract

Potential-induced degradation (PID) in photovoltaic (PV) solar panels occurs due to the operation in strings that are part of large installations, and under determinate voltage and environmental operating conditions, especially humidity and temperature. The PID can cause decreasing of up to 40 % in the generated power capacity of the PV panel and, in the most severe cases, the end of its lifetime. When this phenomenon is detected in time, the causes can be corrected and, the effect on the PV panels could be susceptible to a reversibility process. This article presents a comparative analysis of the performance of four electrical indicators to detect PID reported in recent literature. This study is carried out by simulation, using the single-diode model to represent the PV panel, and under different irradiance and temperature conditions. The results show the advantages of an indicator based on normalized parallel resistance, in terms of its practicality and low sensitivity to changes in irradiance and temperature conditions.

Downloads

Download data is not yet available.

References

  1. IEA, “Solar Energy: Maping the road ahead,” vol. 20, no. October, pp. 1–82, 2019. [Online]. Available: https://webstore.iea.org/solar-energy-mapping-the-road-ahead
  2. M. Köntges, S. Kurtz, C. Packard, U. Jahn, K. Berger, K. Kato, T. Friesen, H. Liu, M. Van Iseghem, “Review of Failures of Photovoltaic Modules,” International Energy Agency, Tech. Rep., 2014.
  3. S. Pingel, O. Frank, M. Winkler, S. Oaryan, T. Geipel, H. Hoehne, J. Berghold, “Potential induced degradation of solar cells and panels,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2010, pp. 2817– 2822.
  4. H. Yang, H. Wang, X. Jiang, C. Chen, J. Chang, J. Zhang, J. Huang, “Effect of PID on Energy Conversion Efficiency of Crystalline Silicon Photovoltaic Power Plant,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, pp. 1927–1930.
  5. SMA Solar Technology AG, “Potential Induced Degradation (PID),” pp. 1–4, 2011.
  6. R. Swanson, M. Cudzinovic, D. Deceuster, V. Desai, J. Jürgens, N. Kaminar, W. Mulligan, D. Rose, D. Smith, a. Terao, K. Wilson, S. Corporation, I. Way, “The Surface Polarization Effect In High- Efficiency Silicon Solar Cells,” IEEE Photovoltaic Specialists Conference, 15th, pp. 1–4, 2005.
  7. K. Brecl, M. Bokalič, M. Topič, “PV Silicon Module Degradation Under High Positive Voltage Bias,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, vol. 2, no. Figure 1, 2017, pp. 1667–1670.
  8. W. Luo, Y. S. Khoo, P. Hacke, V. Naumann, D. Lausch, S. P. Harvey, J. P. Singh, J. Chai, Y. Wang, A. G. Aberle, S. Ramakrishna, “Potential-induced degradation in photovoltaic modules: a critical review,” Energy Environ. Sci., vol. 10, no. 1, pp. 43–68, 2017, doi: https://doi.org/10.1039/C6EE02271E
  9. J. Lu, Q. Wie, C. Wu, Y. Hu, W. Lian, and Z. Ni, “Investigation on the Anti-PID Method of MCSi Solar Cell for Mass Production,” in 32rd European Photovoltaic Solar Energy Conference and Exhibition, no. 1, 2016, pp. 664–666.
  10. C.-W. Kuo, T.-M. Kuan, L.-G. Wu, C.-C. Huang, H.-Y. Peng, C.-Y. Yu, “Ultrahigh PIDResistance for Mono Silicon PERC Solar Cells by Using Industrial Mass-production Technology,” in 32rd European Photovoltaic Solar Energy Conference and Exhibition, 2016, pp. 966–968.
  11. C. Hinz, S. Koch, T. Weber, J. Berghold, P.-i. B. Ag, D. Berlin, “Regeneration of Potential Induced,” 32nd European Photovoltaic Solar Energy Conference and Exhibition, vol. 49, no. 30, pp. 1–12, 2016.
  12. S. Pingel, S. Janke, O. Frank, “Recovery Methods for Modules Affected by Potential Induced Degradation (PID),” in 27th European Photovoltaic Solar Energy Conference, no. January, 2012, pp. 3379–3383.
  13. Pidbull, “Pidbull - Patented PID Technology to Boost Your PV Output.” [Online]. Available: http://pidbull.com/product/
  14. PIDbox, “PIDbox - Home EN.” [Online]. Available: http://www.pidbox.eu/#thepidbox
  15. ILUMEN, “PIDbox Mini - Ilumen.” [Online]. Available: https://www.ilumen.be/en/all-products/pid-box-mini/
  16. C. Bedin, A. K. Vidal De Oliveira, L. Rafael Do Nascimento, G. Xavier De Andrade Pinto, L. Augusto, Z. Sergio, R. Rüther, “PID Detection in Crystalline Silicon Modules Using Low-Cost Electroluminescence Images in the Field,” Asia Pacific Solar Research Conference. [Online]. Available: www.fotovoltaica.ufsc.br
  17. F. Martínez-Moreno, E. Lorenzo, J. Muñoz, R. Parra, T. Espino, “On-site test for the detection of potential induced degradation in modules,” in 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp. 3313–3317. [Online]. Available: https://oa.upm.es/30003/
  18. J. Hauch, T. Pickel, C. J. Brabec, C. Camus, S. Wrana, M. Dalsass, C. Zetzmann, T. Blumberg, C. Buerhop, J. Adams, “IR-images of PV-modules with potential induced degradation (PID) correlated to monitored string power output,” Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, vol. 9938, p. 99380J, 2016.
  19. C. Buerhop, T. Pickel, F. W. Fecher, C. Zetzmann, J. Hauch, C. Camus, C. J. Brabec, “Quantitative Study of Potential Induced Degradation of a Roof-Top PV-Installation With IR-Imaging,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, 2017, pp. 1931–1936.
  20. S. Spataru, D. Sera, T. Kerekes, R. Teodorescu, “Diagnostic method for photovoltaic systems based on light I-V measurements,” Solar Energy, vol. 119, pp. 29–44, 2015, [Online]. Available: https://dx.doi.org/10.1016/j.solener.2015.06.020
  21. M. Florides, G. Makrides, G. E. Georghiou, “Early Potential Induced Degradation (PID) Detection in the Field: Voltage Measurement Methods,” in 33rd European Photovoltaic Solar Energy Conference and Exhibition, vol. 39, 2017, pp. 1677–1681.
  22. P. Hernday, “Solar I-V Curves Interpreting Trace Deviations,” Solar Pro, no. September, 2014.
  23. SolarPower Europe, “Operation Maintenance Best Practices Guidelines / Version 3.0,” Tech. Rep., 2018.
  24. T. Kropp, M. Schubert, J. H. Werner, “Quantitative prediction of power loss for damaged photovoltaic modules using electroluminescence,” Energies, vol. 11, no. 5, 2018.
  25. U. Jahn, M. Herz, M. Köntges, D. Parlevliet, M. Paggi, I. Tsanakas, J. S. Stein, K. A. Berger, S. Ranta, R. H. French, M. Richter, T. Tanahashi, Review on Infrared and Electroluminescence Imaging for PV Field Applications, 2017.
  26. J. Berghold, P. Grunow, P. Hacke, W. Hermann, S. Hoffmann, S. Janke, B. Jaecke, S. Koch, M. Koehl, G. Mathiak, S. Pingel, L. Poehlman, P. Reinig, A. Ukar, “PID Test Round Robins and Outdoor Correlation,” 28th European Photovoltaic Solar Energy Conference and Exhibition, no. September, pp. 3003–3011, 2013.
  27. J. Coello, P. Gutierrez, A. Velasco, A. Cristobal, V. Parra, M. Rosa, “Implementation of Aerial Thermography Inspection of PV Modules in the OM Activities in Large Pv Plants,” in 32nd European Photovoltaic Solar Energy Conference and Exhibition, 2016, pp. 1730–1735.
  28. T. Kaden, K. Lammers, S. Hoffmann, M. Köhl, P. Bentz, H. J. Möller, “Fast Detection of PID Affected Solar Modules Using Flight Thermography,” in 29th European Photovoltaic Solar Energy Conference and Exhibition, 2014, pp. 2994–2996.
  29. G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, Photovoltaic Sources Modeling, 2017.
  30. M. Florides, G. Makrides, G. E. Georghiou,“Characterisation of the Shunt Resistance due to Potential Induced Degradation (PID) in Crystalline Solar Cells,” 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, pp. 695–699, 2018.
  31. C. S. Ruschel, F. P. Gasparin, E. R. Costa, and A. Krenzinger, “Assessment of PV modules shunt resistance dependence on solar irradiance,” Solar Energy, vol. 133, pp. 35–43, 2016, doi: https://dx.doi.org/10.1016/j.solener.2016.03.047
  32. J. Bastidas-Rodríguez, E. Franco, G. Petrone, C. Ramos-Paja, G. Spagnuolo, “Quantification of photovoltaic module degradation using model based indicators,” Mathematics and Computers in Simulation, vol. 131, pp. 101–113, 2017, doi: https://doi.org/10.1016/j.matcom.2015.04.003
  33. J. Accarino, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, “Symbolic algebra for the calculation of the series and parallel resistances in PV module model,” 4th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, pp. 62–66, 2013.
  34. M. G. Villalva, J. R. Gazoli, E. R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009, doi: https://doi.org/10.1109/TPEL.2009.2013862
  35. INTI, “IPS- 100 pv panel datasheet.” [Online]. Available: https://www.energiaymovilidad.com/blog/wp-content/uploads/2018/05/IPS-100esp.pdf
  36. A. D. Dhass, P. Lakshmi, E. Natarajan, “Investigation of Performance Parameters of Different Photovoltaic Cell Materials using the Lambert-W Function,” Energy Procedia, vol. 90, no. December 2015, pp. 566–573, 2016, doi: http://dx.doi.org/10.1016/j.egypro.2016.11.225