Vol. 21 No. 3 (2022): Revista UIS Ingenierías
Articles

Methodology for the selection of technologies in rural energization projects

Ivan Felipe Muñoz-Sarria
Universidad del Cauca
Maximiliano Bueno-López
Universidad del Cauca

Published 2022-09-30

Keywords

  • Multi-criteria methods,
  • Unconventional sources of energy,
  • renewable energy,
  • non-interconnected zones (ZIN),
  • sustainability,
  • energy poverty,
  • Electrification,
  • Energy planning,
  • Matlab,
  • Analytical hierarchical process AHP
  • ...More
    Less

How to Cite

Muñoz-Sarria, I. F., & Bueno-López, M. (2022). Methodology for the selection of technologies in rural energization projects. Revista UIS Ingenierías, 21(3), 85–100. https://doi.org/10.18273/revuin.v21n3-2022008

Abstract

This paper proposes a search and analysis of the most relevant criteria for choosing a type of primary energy resource, where technical, economic, socio-political and environmental aspects were established in order to consider all the information that allows choosing the best generation alternative for a non-interconnected area that guarantees sustainable development. With these aspects, the different barriers that renewable technologies have had to penetrate the Colombian electricity sector were identified and, based on these barriers, the criteria to be taken into account to implement a multi-criteria method to reduce subjectivity at the time of the election were established. Information was collected about the most used multicriteria methods for decision making in energy projects, where the ELECTRE, PROMETHEE, AHP, MAUT, TOPSIS and VIKOR methods were studied in order to choose the best one for decision making in this sector. In order to choose the method to be used, aspects such as complexity, background, level of subjectivity, application and flexibility of the methods were defined, resulting in the analytical hierarchical method (AHP) as one of the best options. Once the method was chosen, a validation was carried out based on a case study in the indigenous reservation Calle Santa Rosa, in Timbiquí (Cauca), where based on the established criteria and the implementation of the AHP multicriteria method, it was possible to identify that the best energy solution is photovoltaic solar energy followed by biomass energy.

Downloads

Download data is not yet available.

References

  1. J. Alexis, G. Castro, S. Universidad, S. T.-S. Bogotá, and F. de Derecho, “Garantía de la prestación del servicio público de energía eléctrica y régimen tarifario para materializar los principios de continuidad, ampliación y cobertura.,” 2021.
  2. M. Acuna et al., “Operational planning of energy for non‐interconnected zones: A simulation‐optimization approach and a case study to tackle energy poverty in colombia,” Energies (Basel), vol. 14, no. 10, 2021, doi: 10.3390/en14102789.
  3. F. León Paime, “Desafíos contemporáneos en el desarrollo del sector eléctrico colombiano,” REC, vol. 7, no. 10, pp. 87-111, Jul. 2019, doi: https://doi.org/10.53995/23463279.629.
  4. J. F. García-Franco, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Rational and efficient energy use programs in Non-Interconnected Zones in Colombia: a system dynamics analysis,” Energy Efficiency, vol. 14, no. 7, Oct. 2021, doi: 10.1007/s12053-021-09989-2.
  5. G. Zubi, R. Dufo-López, G. Pasaoglu, and N. Pardo, “Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020-2040 scenario,” Applied Energy, vol. 176, pp. 309-319, Aug. 2016, doi: 10.1016/j.apenergy.2016.05.022.
  6. R. Moreno, S. A. Cantillo, and L. A. Carrillo-Rodríguez, “Risk analysis of firm energy coverage in Colombia in the medium term,” International Journal of Energy Economics and Policy, vol. 11, no. 2, pp. 220-226, 2021, doi: 10.32479/ijeep.10490.
  7. A. R. López et al., “Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market,” Renewable Energy, vol. 148, pp. 1266-1279, Apr. 2020, doi: 10.1016/j.renene.2019.10.066.
  8. M. de los A. Maldonado, J. K. Moreno Calderon, Y. A. Muñoz Maldonado, and A. Ospino, “Technical and Economic Evaluation of a Small-Scale Wind Power System Located in Berlin, Colombia.,” TECCIENCIA, vol. 13, no. 24, pp. 63-72, Sep. 2019, doi: 10.18180/tecciencia.2018.24.7.
  9. A. Sagastume Gutiérrez, J. J. Cabello Eras, L. Hens, and C. Vandecasteele, “The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia,” Journal of Cleaner Production, vol. 269, Oct. 2020, doi: 10.1016/j.jclepro.2020.122317.
  10. D. A. Moreno-Rendón, I. J. López-Sánchez, and D. Blessent, “Geothermal energy in Colombia as of 2018,” Ingeniería y Universidad, vol. 24, no. 1. Pontificia Universidad Javeriana, 2020. doi: 10.11144/Javeriana.iyu24.geic.
  11. J. J. Cabello Eras, J. M. Mendoza Fandiño, A. Sagastume Gutiérrez, J. G. Rueda Bayona, and S. J. Sofan German, “The inequality of electricity consumption in Colombia. Projections and implications,” Energy, vol. 249, Jun. 2022, doi: 10.1016/j.energy.2022.123711.
  12. M. J. Herington, E. van de Fliert, S. Smart, C. Greig, and P. A. Lant, “Rural energy planning remains out-of-step with contemporary paradigms of energy access and development,” Renewable and Sustainable Energy Reviews, vol. 67. Elsevier Ltd, pp. 1412-1419, Jan. 01, 2017. doi: 10.1016/j.rser.2016.09.103.
  13. S. M. Bhagavathy and G. Pillai, “PV microgrid design for rural electrification,” Designs (Basel), vol. 2, no. 3, pp. 1-22, Sep. 2018, doi: 10.3390/designs2030033.
  14. V. Motjoadi, P. N. Bokoro, and M. O. Onibonoje, “A review of microgrid-based approach to rural electrification in South Africa: Architecture and policy framework,” Energies (Basel), vol. 13, no. 9, May 2020, doi: 10.3390/en13092193.
  15. E. Strantzali and K. Aravossis, “Decision making in renewable energy investments: A review,” Renewable and Sustainable Energy Reviews, vol. 55. Elsevier Ltd, pp. 885-898, Mar. 01, 2016. doi: 10.1016/j.rser.2015.11.021.
  16. L. Li, X. Deng, J. Zhao, F. Zhao, and J. W. Sutherland, “Multi-objective optimization of tool path considering efficiency, energy-saving and carbon-emission for free-form surface milling,” Journal of Cleaner Production, vol. 172, pp. 3311-3322, Jan. 2018, doi: 10.1016/j.jclepro.2017.07.219.
  17. A. Kumar et al., “A review of multi criteria decision making (MCDM) towards sustainable renewable energy development,” Renewable and Sustainable Energy Reviews, vol. 69. Elsevier Ltd, pp. 596-609, Mar. 01, 2017. doi: 10.1016/j.rser.2016.11.191.
  18. A. C. Marques et al., “Support for multicriteria group decision with voting procedures: Selection of electricity generation technologies,” Cleaner Environmental Systems, vol. 3, Dec. 2021, doi: 10.1016/j.cesys.2021.100060.
  19. D. M. Molano & W. Ramírez, “Exposición de las principales políticas públicas relacionadas con la cobertura energética renovable de zonas no interconectadas en Colombia, Repositorio Institucional UNAD. Universidad Nacional,” 2020.
  20. Á. P. Sepúlveda, “Soluciones energéticas para zonas rurales (¿En el posconflicto?),” Revista de ingeniería, no. 44, pp. 36-39, 2016, doi: https://doi.org/10.16924/revinge.44.5.
  21. G. S. Fernández, L. E. Ortiz, and F. J. Posso, “Proponer la instalación de Paneles Solares de Energía Fotovoltaica en el Jardín Parque Cementerio Los Olivos Ubicado en el Municipio de Cota en el Departamento de Cundinamarca – Colombia,” Trabajo de grado, Repositorio Institucional UNAD. Universidad Nacional Abierta y a Distancia, 2019.
  22. UPME, “Integración de las energías renovables no convencionales en Colombia,” 2015, Accessed: Feb. 19, 2022. [Online]. Available: https://www1.upme.gov.co/DemandayEficiencia/Doc_Hemeroteca/Estudio_integracion_energias/Integracion_energias_renovables.pdf
  23. S. Cortes and A.A. Londoño, “Energías renovables en Colombia: una aproximación desde la economía,” vol. 25, no. 38, pp. 375-390, 2017, doi: rces.v25n38.a7.
  24. C. Adrián Correa Flórez, G. Alberto Marulanda García, and A. Felipe Panesso Hernández, “Impact of penetration of solar PV energy in distribution systems: case of study based on assumptions of the colombian context,” Revista Tecnura, vol. 20, no. 50, pp. 85-95, doi: 10.14483/udistrital.jour.tecnura.2016.4.a06.
  25. J. Gómez-Ramírez, J. D. Murcia-Murcia, and I. Cabeza-Rojas, “La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas,” 2017.
  26. J. Manuel and M. Navarrete, “Selección de criterios ambientales para la evaluación multicriterio de alternativas de suministro de energía eléctrica en zonas no interconectadas de Colombia,” Trabajo de grado, Universidad Autónoma de Occidente, 2017.
  27. B. G. Guerrero Hoyos, F. D. J. Vélez Macías, and D. E. Morales Quintero, “Energía eólica y territorio: sistemas de información geográfica y métodos de decisión multicriterio en La Guajira (Colombia),” Ambiente y Desarrollo, vol. 23, no. 44, Feb. 2020, doi: 10.11144/javeriana.ayd23-44.eets.
  28. F. Isaza Cuervo, “Valoración de fuentes renovables no convencionales de generación de electricidad: un enfoque desde las opciones reales,” Cuadernos de Administración, vol. 28, no. 51, Feb. 2016, doi: 10.11144/javeriana.cao28-51.vfrc.
  29. J. Tierradentro Cruz and K. M. Oviedo, “Aprovechamiento de la biomasa residual pecuaria en Colombia,” mare, vol. 1, no. 2, pp. 46-55, 2020, doi: https://doi.org/10.52948/mare.v1i2.190.
  30. J. David Ortiz Tocora and C. Público Directora Dra Rosa Eugenia Reyes Gil, “Barreras corporativas a la adopción de energías limpias en Colombia,” 2016.
  31. A. Kumar, A. R. Singh, Y. Deng, X. He, P. Kumar, and R. C. Bansal, “A Novel Methodological Framework for the Design of Sustainable Rural Microgrid for Developing Nations,” IEEE Access, vol. 6, pp. 24925–24951, May 2018, doi: 10.1109/ACCESS.2018.2832460.
  32. IDEAM, “Atlas velocidad del viento,” 2021, Accessed: May 25, 2021. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html
  33. IDEAM, “Atlas radiación solar,” 2021, Accessed: May 25, 2021. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html
  34. IRENA, “PERFIL ENERGÍA COLOMBIA,” 2021, Accessed: May 26, 2022. [Online]. Available: https://www.irena.org/IRENADocuments/Statistical_Profiles/South%20America/Colombia_South%20America_RE_SP.pdf
  35. SIAME, “Atlas del potencial energético de la biomasa residual en Colombia,” 2021, Accessed: May 25, 2021. [Online]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspx
  36. IPSE, “Instituto de Planificación y Promoción de Soluciones Energéticas,” 2021, Accessed: Feb. 23, 2021. [Online]. Available: https://ipse.gov.co/mapa-del-sito/proyectos-ipse/proyectos-fanzi/
  37. UPME, “Demanda y eficiencia energética,” 2021, Accessed: Feb. 25, 2021. [Online]. Available: https://www1.upme.gov.co/DemandayEficiencia/Paginas/default.aspx
  38. MinEnergía, “Energías Renovables No Convencionales,” 2021, Accessed: Feb. 23, 2021. [Online]. Available: https://www.minenergia.gov.co/energias-renovables-no-convencionales