Vol. 21 No. 3 (2022): Revista UIS Ingenierías
Articles

Closed loop system for discrete event system failure diagnosis using interpreted Petri nets

Klever S. Arrechea-Castillo
Universidad del Cauca
Óscar Muriel-Velazques
Universidad del Cauca
Mariela Muñoz-Añasco
Universidad del Cauca
Wilber Acuña-Bravo
Universidad del Cauca

Published 2022-07-25

Keywords

  • Discrete Event Systems (DES),
  • Interpreted Petri Nets (IPN),
  • matrix of incidence,
  • fault diagnosis,
  • level control,
  • constructed wetland,
  • system identification,
  • detectability of events,
  • automation of processes,
  • observer of states
  • ...More
    Less

How to Cite

Arrechea-Castillo , K. S. ., Muriel-Velazques , Óscar ., Muñoz-Añasco , M. ., & Acuña-Bravo , W. (2022). Closed loop system for discrete event system failure diagnosis using interpreted Petri nets. Revista UIS Ingenierías, 21(3), 55–70. https://doi.org/10.18273/revuin.v21n3-2022005

Abstract

This paper presents the implementation of an online fault diagnostics, for the detection of operational faults present in the pilot water processing plant, within the framework of the REAGRITECH project of the UNESCO chair of sustainability, modeled as a system of discrete events (SED), making use of interpreted Petri nets (IPN). An analysis of the operation of the real system is carried out, from which some operating scenes are identified, which allow the construction of a controller in charge of representing, in a simulated way, the real behavior of the plant. From this, an input-output (I/O) information matrix is ​​obtained, where the inputs correspond to the control command signals, and the outputs are the sensor signals. These data are entered as parameters to an identification algorithm, which delivers as a result the model of the IPN identified from the data, that is, information of an IPN: incidence matrix A, input function (Fe) with the labels associated with the transitions, the output function (Fs) and an output matrix φ that relates the sensors to each slot in the system. Based on the identified model, a detectability analysis is carried out to find out if the system is detectable or not by events, building a diagnostic from predefined faults. It is concluded that the diagnostic tool implemented is capable of detecting faults present in the pilot water processing plant, within the framework of the REAGRITECH project, making an analysis of the marking in the diagnostic places, and in the Post risk places of the system.

Downloads

Download data is not yet available.

References

  1. R. J. Patton, C. J. López-Toribio, F. J. Uppal, “Artificial intelligence approaches to fault diagnosis,” in IEE Colloquium on Condition Monitoring: Machinery, External Structures and Health (Ref. No. 1999/034), April 1999, pp. 5/1-518.
  2. M. Ayoubi, “Neuro-fuzzy structure for rule generation and application in the fault diagnosi of technical processes,” in Proceedings of 1995 American Control Conference - ACC’95, vol. 4, June 1995, pp. 2757-2761 vol. 4, doi: https://doi.org/10.1109/ACC.1995.532351
  3. L. Urrego, M. Muñoz-Añasco, “Latent nestling method as an abstraction method in coloured petri nets for fault diagnosis in complex systems,” Revista Ontare, vol. 3, pp. 97-123, 2015, doi: https://doi.org/10.21158/23823399.v3.n1.2015.1252
  4. M. Muñoz-Añasco, “Identificación y diagnóstico de fallos en sistemas de eventos discretos estocásticos,” tesis doctoral, Universitat Politècnica de València, 2015, doi: https://doi.org/10.4995/Thesis/10251/53915
  5. J. Zaytoon, S. Lafortune, “Overview of fault diagnosis methods for discrete event systems,” Annual Reviews in Control, vol. 37, no. 2, pp. 308-320, 2013, doi: https://doi.org/10.1016/j.arcontrol.2013.09.009
  6. M. Sampath, “A Discrete Event Systems Approach to Failure Diagnosis”, tesis doctoral, University of Michigan, 1995.
  7. Y. Ru, C. N. Hadjicostis, “Fault diagnosis in discrete event systems modeled by partially observed petri nets,” Discrete Event Dynamic Systems, vol. 19, no. 4, p. 551, 2009, doi: https://doi.org/10.1007/s10626-009-0074-7
  8. R. C. de Vries, “An automated methodology for generating a fault tree,” IEEE Transactions on Reliability, vol. 39, no. 1, pp. 76-86, 1990, doi: https://doi.org/10.1109/24.52615
  9. S. Hashtrudi Zad, R. H. Kwong, W. M. Wonham, “Fault diagnosis in discrete-event systems: framework and model,” IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1199-1212, 2003, doi: https://doi.org/10.1109/CDC.1998.761808
  10. A. S. Willsky, “A survey of design methods for failure detection in dynamic systems,” Automatica, vol. 12, no. 6, pp. 601-611, 1976, doi: https://doi.org/10.1016/0005-1098(76)90041-8
  11. C. Angeli, “Diagnostic expert systems: From expert’s knowledge to real-time systems,” Advanced Knowledge Based Systems: Model, Applications & Research, vol. 1, 01 2010.
  12. G. Cansever, I. Kucukdemiral, “A new approach to supervisor design with sequential control petri-net using minimization technique for discrete event system,” The International Journal of Advanced Manufacturing Technology, vol. 29, no. 1108 2005.
  13. G.-B. Lee, H. Zandong, J. Lee, “Automatic generation of ladder diagram with control petri net,” Journal of Intelligent Manufacturing, vol. 15, pp. 245-252, 2004, doi: https://doi.org/10.1023/B:JIMS.0000018036.84607.37
  14. J.-S. Lee, P.-L. Hsu, “An improved evaluation of ladder logic diagrams and petri nets for the sequence controller design in manufacturing systems,” The International Journal of Advanced Manufacturing Technology, vol. 24, pp. 279-287, 2004, doi: https://doi.org/10.1007/s00170-003-1722-y
  15. G. Frey, L. Litz, “Verification and validation of control algorithms by coupling of interpreted petri nets,” vol. 1, pp. 7-12, 1998, doi: https://doi.org/10.1109/ICSMC.1998.725375
  16. L. Rivera Cambero, L. Aguirre Salas, A. Sánchez, S. González-Palomares, “Sistema embebido para simular redes de petri interpretadas,” IX Semana Nacional de Ingeniería Electrónica, vol. IX, pp. 532-539, 2013.
  17. A. Ramírez-Trevino, I. Rivera-Rangel, E. López-Mellado, “Observability of discrete event systems modeled by interpreted petri nets,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 557-565, 2003, doi: https://doi.org/10.1109/TRA.2003.814503
  18. I. Rivera Rangel, A. Ramírez Trevino, L. Aguirre Salas, J. Ruiz-León, “Geometrical characterization of observability in interpreted petri nets,” Kybernetika, vol. 5, 2005.
  19. A. Ramfrez Trevino, I. Rangel, E. Lope Mellado, “Observer design for discrete event systems modeled by interpreted petri nets,” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, vol. 3, 2000, pp. 2871-2876, doi: https://doi.org/10.1109/ROBOT.2000.846463
  20. A. Ramírez-Trevino, E. Ruiz-Beltrán, J. Aramburo-Lizarraga, and E. López-Mellado, “Structural diagnosability of des and design of reduced petri net diagnosers,” IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, vol. 42, no. 2, pp. 416-429, 2012, doi: http://dx.doi.org/10.1109/TSMCA.2011.2169950
  21. A. Gallegos, L. Aguilar, I. Campos, P. Caro, S. Sahuquillo, C. Pérez, C. A. Arias, J. Montoya, J. Morató, “TIC para la determinación de los parámetros operacionales de humedales construidos diseñados para el tratamiento de aguas contaminadas por nitratos,” Revista Ingenierías Universidad de Medellín, vol. 15, pp. 53-70, 06 2016.
  22. D. F. Valencia Medina, “Verificación de la diagnosticabilidad de un sistema de eventos discretos, en función del número de señales de salida,” trabajo fin de grado, Universidad del Cauca, 2018.
  23. J. Arámburo-Lizárraga, A. Ramírez-Trevino, E. López-Mellado, and E. Ruiz Beltrán, “Fault Diagnosis in Discrete Event Systems Using Interpreted Petri Nets”, in Advances in Robotics, Automation and Control, 2008, doi: https://doi.org/10.5772/5534