Published 2023-09-22
Keywords
- DC-DC power converters,
- linear matrix inequalities,
- current control,
- renewable energy sources,
- state feedback
- robust control,
- stability analysis,
- switching converters,
- linear feedback control systems,
- state-space methods ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The aim of this work is the design of a current control by means of state feedback, based on linear matrix inequalities (LMI), and it is applied in a DC-DC coupled inductors Buck-Boost modular converter, which has been widely used in distributed generation systems with renewable energy sources. This method considers constraints on the location of poles defined in the complex plane called d-stability. The closed-loop control system is implemented in Matlab® Simulink and validated under different test scenarios, where better dynamic performance is obtained, its operating range is extended, with shorter settling times and a better time-response, in contrast with the classical PI control technique.
Downloads
References
- J. D. Bastidas-Rodríguez, C. Ramos-Paja, “Types of inverters and topologies for microgrid applications”, Rev. UIS Ing., vol. 16, no. 1, pp.7-14, 2017, doi: https://doi.org/10.18273/revuin.v16n1-2017001
- C. Restrepo, T. Konjedic, J. Calvente, M. Milanovic, y R. Giral, “Fast Transitions Between Current Control Loops of the Coupled-Inductor Buck–Boost DC–DC Switching Converter”, IEEE Trans. on Power Electronics, vol. 28, no. 8, pp. 3648-3652, 2013, doi: https://doi.org/10.1109/TPEL.2012.2231882
- H. Ramírez, C. Restrepo, T. Konjedic, J. Calvente, A. Romero, C. R. Baier, R. Giral, “An Efficiency Comparison of Fuel-Cell Hybrid Systems Based on the Versatile Buck–Boost Converter”, IEEE Trans. on Power Electronics, vol. 33, no. 2, pp. 1237-1246, 2018, doi: https://doi.org/10.1109/TPEL.2017.2678160
- V. Vera-Saldaña, “Control de Potencia en Microrredes AC”, trabajo de fin de grado, Programa de Ingeniería Eléctrica, Universidad de La Salle, Bogotá D.C., 2020.
- C. Restrepo, G. Garcia, F. Flores-Bahamonde, D. Murillo-Yarce, J. I. Guzman, M. Rivera, “Current Control of the Coupled-Inductor Buck–Boost DC–DC Switching Converter Using a Model Predictive Control Approach”, IEEE Jour. of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3348-3360, 2020, doi: https://doi.org/10.1109/JESTPE.2020.2992622
- E. Aguilar-Jaramillo, V. Proaño-Rosero. “Application of LMI to the Design of Robust Controllers”, Ingenius. Rev. de Ciencia y Tecnología, vol. 18, pp. 93-105, 2017, doi: https://doi.org/10.17163/ings.n18.2017.11
- S. Cheng, L. Li, C. Z. Liu, X. Wu, S. N. Fang, J. W. Yong, “Robust LMI-Based H-Infinite Controller Integrating AFS and DYC of Autonomous Vehicles with Parametric Uncertainties,” in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 11, pp. 6901-6910, 2021, doi: https://doi.org/10.1109/TSMC.2020.2964282
- R. Franco, H. Ríos, A. F. de Loza, D. Efimov, “A Robust Nonlinear Model Reference Adaptive Control for Disturbed Linear Systems: An LMI Approach,” in IEEE Transactions on Automatic Control, vol. 67, no. 4, pp. 1937-1943, April 2022, doi: https://doi.org/10.1109/TAC.2021.3069719
- C. A. Torres-Pinzón, L. Paredes-Madrid, F. Flores-Bahamonde, H. Ramirez-Murillo, “LMI-Fuzzy Control Design for Non-Minimum-Phase DC-DC Converters: An Application for Output Regulation”, Applied Sciences, vol. 11, no. 5, p. 2286, 2021, doi: https://doi.org/10.3390/app11052286
- T. Basar, P. Bernhard, H∞ Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. New York, USA: Springer, 2008.
- Anu, S. Narayan, y Deepika, “Control of buck-boost converter using H∞ techniques”, en 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), 2017, pp. 1-5, doi: https://doi.org/10.1109/ICICCIS.2017.8660906
- D. M. Devia-Narváez, R. Ospina-Ospina, D. Devia-Narváez, “Formulación de un controlador 𝑯∞ con incertidumbre no estructurada para un convertidor DC - DC elevador (Boost)”, Rev. UIS Ing., vol. 20, no. 2, pp. 45-52, 2021, doi: https://doi.org/10.18273/revuin.v20n2-2021004
- P. Xia, H. Shi, H. Wen, Q. Bu, Y. Hu, Y. Yang, “Robust LMI-LQR Control for Dual-Active-Bridge DC–DC Converters with High Parameter Uncertainties”, IEEE Trans. on Transportation Electrification, vol. 6, no. 1, pp. 131-145, 2020, doi: https://doi.org/10.1109/TTE.2020.2975313
- C. Olalla, R. Leyva, A. El Aroudi, I. Queinnec, “Robust LQR Control for PWM Converters: An LMI Approach”, IEEE Trans. on Industrial Electronics, vol. 56, no. 7, pp. 2548-2558, 2009, doi: https://doi.org/10.1109/TIE.2009.2017556
- R. Bimarta, K. H. Kim, “A Robust Frequency-Adaptive Current Control of a Grid-Connected Inverter Based on LMI-LQR Under Polytopic Uncertainties,” in IEEE Access, vol. 8, pp. 28756-28773, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2972028
- V. Veselý, L. Körösi, “Robust PI-D Controller Design for Uncertain Linear Polytopic Systems Using LMI Regions and $H_2$ Performance,” in IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5353-5359, 2019, doi: https://doi.org/10.1109/TIA.2019.2921282
- C. Restrepo, J. Calvente, A. Romero, E. Vidal-Idiarte, R. Giral, “Current-Mode Control of a Coupled-Inductor Buck–Boost DC–DC Switching Converter”, IEEE Trans. on Power Electronics, vol. 27, no. 5, pp. 2536-2549, May 2012, doi: https://doi.org/10.1109/TPEL.2011.2172226
- L. E. Garcia-Jaimes, M. Arroyave-Giraldo, “Detección de anormalidades en el control de estabilidad de una aeronave”, Rev. UIS Ing., vol. 18, no. 4, pp. 105-116, 2019, doi: https://doi.org/10.18273/revuin.v18n4-2019010
- C. A. Torres-Pinzon, R. Giral, R. Leyva, “LMI-Based Robust Controllers for DC-DC Cascade Boost Converters”, Journ. of Power Electronics, vol. 12, no. 4, pp. 538–547, Jul. 2012, doi: https://doi.org/10.6113/JPE.2012.12.4.538