Vol. 22 No. 1 (2023): Revista UIS Ingenierías
Articles

Heat flow and specific heat capacity in the dehydration stage of biomasses pyrolysis through thermal analyses

Fernanda Rezende-Lopes
Universidade Estadual de Campinas
Katia Tannous
Universidade Estadual de Campinas
Thiago Rezende-Lopes
Universidade Estadual de Campinas

Published 2023-01-10

Keywords

  • biomass,
  • calorimetry,
  • evaporation,
  • heating,
  • thermogravimetry

How to Cite

Rezende-Lopes, F. ., Tannous, K., & Rezende-Lopes, T. (2023). Heat flow and specific heat capacity in the dehydration stage of biomasses pyrolysis through thermal analyses. Revista UIS Ingenierías, 22(1), 57–68. https://doi.org/10.18273/revuin.v22n1-2023006

Abstract

This study aims to investigate the influence of the moisture of energy cane and coconut fiber on heat flow and specific heat capacity in the dehydration stage from the pyrolysis process. The experiments were carried out in a simultaneous thermogravimetry and differential scanning calorimetry analyzer using a heating rate of 20 K/min in an inert atmosphere. Three decomposition stages were identified: dehydration (marked by an expressive endothermic peak), pyrolysis, and carbonization. From the analyses of the water contributions, it was observed that the heat flow from the heat capacity of remaining water (Qwc) is negligible compared to the heat flow from the water evaporation (Qwe), for both biomasses. Also, we calculated the heat flow from the heat capacity (Qb) and the experimental specific heat capacity (cp,b) of biomasses such as 686-2371 J/kg K and 1076-2113 J/kg K, respectively. Then, for the dehydration stage, third- and fourth-order theoretical polynomial equations have been proposed to predict the heat required for the biomass heating.

Downloads

Download data is not yet available.

References

  1. D.I. Aslan, B. Özoğul, S. Ceylan, F. Geyikçi, “Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis”, Bioresour. Technol., vol. 258, pp. 105-110, 2019, doi: https://doi.org/10.1016/j.biortech.2018.02.126
  2. C. Dupont, R. Chiriac, G. Gauthier, F. Toche, “Heat capacity measurements of various biomass types and pyrolysis residues”, Fuel, vol. 115, pp. 644-651, 2014, doi: http://dx.doi.org/10.1016/j.fuel.2013.07.086
  3. Y.J. Rueda-Ordóñez, C.J. Arias-Hernández, J.F. Manrique-Pinto, P. Gauthier-Maradei, W.B. Bizzo, “Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend”, Bioresour. Technol., vol. 292, pp. 121923, 2019, doi: https://doi.org/10.1016/j.biortech.2019.121923
  4. F.X. Collard, J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses, and lignin”, Renew. Sustain. Energy Rev., vol. 38, pp. 594-608, 2014, doi: https://doi.org/10.1016/j.rser.2014.06.013
  5. Y.J. Rueda-Ordóñez, K. Tannous, E. Olivares-Gómez, “An empirical model to obtain the kinetic parameters of lignocellulosic biomass pyrolysis in an independent parallel reactions scheme”, Fuel Process. Technol., vol. 140, pp. 222-230, 2015, doi: http://dx.doi.org/10.1016/j.fuproc.2015.09.001
  6. Empresa de Pesquisa Energética- EPE. “Relatório Síntese -Ano base 2020”, 2021. [Online]. Available at: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-588/BEN_S%C3%ADntese_2021_PT.pdf.
  7. O.V. Carvalho-Netto, J.A. Bressiani, H.L. Soriano, C.S. Fiori, J.M. Santos, G.V.S. Barbosa, M.A. Xavier, M.G.A. Landell, G.A.G. Pereira, “The potential of the energy cane as the main biomass crop for the cellulosic industry”, Chem. Biol. Technol. Agric., vol. 1, pp. 1-8, 2014, doi: http://dx.doi.org/10.1186/s40538-014-0020-2
  8. V.S. Carvalho, K. Tannous, “Thermal decomposition kinetics modeling of energy cane Saccharum robustum”, Thermochim. Acta, vol. 657, pp. 56-65, 2017, doi: http://dx.doi.org/10.1016/j.tca.2017.09.016
  9. H.R. Guimarães, K. Tannous, “Influence of torrefaction on the pyrolysis of energy cane: a study on thermal properties and decomposition kinetics”, J. Therm. Anal. Calorim., vol.139, pp. 2221-2233, 2019, doi: https://doi.org/10.1007/s10973-019-08584-z
  10. Food and Agriculture Organization of the United Nation, FAOSTAT, 2021. [Online]. Available at: http://www.fao.org/faostat/en/#data/QC
  11. A.S. Moura, R. Demori, R.M. Leão, C.L.C. Frankenberg, R.M.C. Santana, “The influence of the coconut fiber treated as reinforcement in PHB (polyhydroxybutyrate) composites”, Mater. Today Communi., vol. 18, pp. 191-198, 2019, doi: https://doi.org/10.1016/j.mtcomm.2018.12.006
  12. J. Cai, S. Chen, “Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition”, Dry. Technol., vol. 26, pp. 1464-1468, 2008, doi: https://doi.org/10.1080/0737390802412116
  13. D. Chen, D. Zhang, X. Zhu, “Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis”, J. Therm. Anal. Calorim., vol. 109, pp. 847-854, 2012, doi: https://doi.org/10.1007/s10973-011-1790-4
  14. R.B. Tabakaev, A.V.Astafev, Y.V. Dubinin, N.A. Yazykov, A.S. Zavorin, V.A. Yakovlev, “Autothermal pyrolysis of biomass due to intrinsic thermal decomposition effects”, J. Therm. Anal. Calorim., vol. 134, pp. 1045-1057, 2018, doi: https://doi.org/10.1007/s10973-018-7562-7
  15. A. Vega-Gálvez, M. Miranda, L.P. Díaz, L. López, K. Rodriguez, K. Di Scala, “Effective moisture diffusivity determination and mathematical modeling of the drying curves of the olive-waste cake”, Bioresour. Technol., vol. 101, pp. 7265-7270, 2010, doi: https://doi.org/10.1016/j.biortech.2010.04.040
  16. D. Chen, Y. Zheng, X. Zhu, “In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages”, Bioresour. Technol., vol. 131, pp. 40-46, 2013, doi: https://doi.org/10.1016/j.biortech.2012.12.136
  17. Y.J. Rueda-Ordóñez, K. Tannous, “Drying and thermal decomposition kinetics of sugarcane straw by nonisothermal thermogravimetric análisis”, Bioresour. Technol., vol. 264, pp. 131-139, 2018, doi: https://doi.org/10.1016/j.biortech.2018.04.064
  18. X. Li, C. Yin, “A drying model for thermally large biomass particle pyrolysis”, Energy Procedia, vol. 158 pp. 1294-1302, 2019, doi: https://doi.org/10.1016/j.egypro.2019.01.322
  19. R. Artiaga, S. Naya, A. García, F. Barbadillo, L. García, “Subtracting the water effect from DSC curves by using simultaneous TGA data”, Thermochim. Acta, vol. 428, pp. 137-139, 2005, doi: https://doi.org/10.1016/j.tca.2004.11.016
  20. J. Cai, R. Liu, “Research on Water Evaporation in the Process of Biomass Pyrolysis”, Energy & Fuels, vol. 21, pp.3695-3697, 2007, doi: https://doi.org/10.1021/ef700442n
  21. J.A. Comesaña, M. Nieströj, E. Granada, A. Szlek, “TG-DSC analysis of biomass heat capacity during pyrolysis process”, J. Energy Inst., vol. 86, pp. 153-159, 2013, doi: https://doi.org/10.1179/1743967112Z.00000000055
  22. F.C.R. Lopes, K. Tannous, “Coconut fiber pyrolysis decomposition kinetics applying single- and multi-step reaction models”, Thermochim. Acta, vol. 691, pp. 178714, 2020, doi: https://doi.org/10.1016/j.tca.2020.178714
  23. F.C.R. Lopes, K. Tannous, “Coconut fiber pyrolysis: specific heat capacity and enthalpy of reaction through thermogravimetry and differential scanning calorimetry”, Thermochim. Acta, vol. 707, pp. 179087, 2022, doi: https://doi.org/10.1016/j.tca.2021.179087
  24. S. Vyazovkin, A.K. Burnhamb, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data”, Thermochim. Acta, vol. 520, pp. 1-19, 2011, doi: https://doi.org/10.1016/j.tca.2011.03.034
  25. K. Jayaraman, M.V. Kok, I. Gokalp. “Combustion properties and kinetics of different biomass samples using TG-MS technique”, J. Therm. Anal. Calorim., vol 127, pp. 1361-1370, 2017, doi: https://10.1007/s10973-016-6042-1
  26. F. He, W. Yi, X. Bai, “Investigation on caloric requirement of biomass pyrolysis using TG–DSC analyzer”, Energy Convers. Manage., vol. 47, pp. 2461-2469, 2006, doi: https://doi.org/10.1016/j.enconman.2005.11.011
  27. D. Chen, M. Li, X. Zhu, “TG-DSC method applied to drying characteristics and heat requirement of cotton stalk during drying”, Heat Mass Transfer., vol. 48, pp. 2087-2094, 2012, doi: https://doi.org/10.1007/s00231-012-1050-6
  28. S. Wang, X.M. Jiang, Q. Wang, H.S. Ji, L.F. Wu, J.F. Wang, S.N. Xu, “Research of specific heat capacities of three large seaweed biomass”, J. Therm. Anal. Calorim., vol. 115, pp. 2071-2077, 2014, doi: https://doi.org/10.1007/s10973-013-3141-0