Vol. 22 No. 2 (2023): Revista UIS Ingenierías
Articles

Electric propulsion powered by hydrogen cells: Impact on carbon footprint mitigation

Marcela Patricia Arrieta-García
Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial
Adriana Milena Castaño-Padilla
Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial
Alejandro Luis Olivera-Ruiz
Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial

Published 2023-04-03

Keywords

  • Hydrogen,
  • fuel cell,
  • electric propulsion,
  • greenhouse gases,
  • CO2 emissions,
  • global temperature,
  • logistic support vessel and cabotage,
  • maritime industry,
  • fluvial industry,
  • power generation source
  • ...More
    Less

How to Cite

Arrieta-García , M. P. ., Castaño-Padilla , A. M., & Olivera-Ruiz , A. L. (2023). Electric propulsion powered by hydrogen cells: Impact on carbon footprint mitigation . Revista UIS Ingenierías, 22(2), 43–56. https://doi.org/10.18273/revuin.v22n2-2023004

Abstract

The increase in global temperature, as a result of greenhouse gas emissions, continues to be a major concern that has led to a deep interest in the implementation of hydrogen as a source of electric power generation; therefore, hydrogen fuel cell technologies have been developed and are available on the market to mitigate CO2 emissions generated by the use of fossil fuels. This document describes the methodology used for the design of an electric propulsion system with energy supply from a hydrogen fuel cell in a Light Cabotage and Logistic Support Vessel - BALC-L. The current design of the vessel has a conventional propulsion with two diesel engines of 224 bkW each and two diesel generators 99 ekW each, as the basis for the proposed analysis of an electric propulsion system energized through a hydrogen fuel cell system. As a result, a change in the operational profile of the vessel and a reduction in the CO2 emissions that it would generate throughout its useful life cycle are identified. The research described in this document is a starting point for the implementation of these technologies in the maritime and fluvial industry in Colombia.

Downloads

Download data is not yet available.

References

  1. Ballard Power Systems, “Fuel Cell Applications for Marine Vessels: Why fuel cells make sense”, Ballard, 2019, [En línea]. Disponible en: https://www.ballard.com/docs/default-source/default-document-library/marine-informational-paper-final.pdf?sfvrsn=c1cec080_2
  2. A. Bordianu, G. Samoilescu, “Electric and hybrid propulsion in the naval industry”, 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 2019, pp. 1-6, doi: https://doi.org/10.1109/ATEE.2019.8725022
  3. M. G. Sürer, H. T. Arat, “Advancements and current technologies on hydrogen fuel cell applications for marine vehicles,” International Journal of Hydrogen Energy, vol. 47, no. 45, 2022, doi: https://doi.org/10.1016/j.ijhydene.2021.12.251
  4. A. Elkafas, M. Shouman, “A Study of the Performance of Ship Diesel-Electric Propulsion Systems From an Environmental, Energy Efficiency, and Economic Perspective”, Marine Technology Society Journal, vol. 56, nº 1, pp. 52-58, 2022, doi: https://doi.org/10.4031/MTSJ.56.1.3
  5. N. Ammar, I. S. Seddiek, “Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel”, Environmental Science and Pollution Research, vol. 28, nº 28, pp. 1-16, 2021, doi: https://doi.org/10.1007/s11356-021-13271-4
  6. E. E. Agency, EMSA, “European Maritime Transport Environmental Report 2021”, EMSA, European Environment Agency, London, 2021.
  7. A. Ait Allal, K. Mansouri, M. Youssfi, M. Qbadou, “Toward an evaluation of marine fuels for a clean and efficient autonomous ship propulsion energy”, Materials Today: Proceedings, vol. 13, pp. 486-495, 2019, doi: https://doi.org/10.1016/j.matpr.2019.04.005
  8. Gobierno de Colombia, “Actualización de la contribución Determinada a Nivel Nacional de Colombia (NDC)”, Ministerio del Medio Ambiente, 2020.
  9. IDEAM, PNUD, MADS, DNP y FMAM, “Tercera Comunicación Nacional de cambio climático: Inventario Nacional de gases de efecto invernadero (GEI)”, 2016.
  10. H. P. Nguyen, A. T. Hoanget al., “The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review”, International Transactions on electrical energy systems, vol. 31, no. 11, 2021, doi: https://doi.org/10.1002/2050-7038.12580
  11. N. Chalermkiat, L. Tie, X. Hongpu, “Design of Cost-Effective and Emission-Aware Power Plant System for Integrated Electric Propulsion Ship”, Journal of Marine Science and Engineering, vol. 9, pp. 1-32, 2021, doi: https://doi.org/10.3390/jmse9070684
  12. R. Derollepot, E, Vinot, “Sizing of a combined series-parallel hybrid architecture for river ship application using genetic algorithm and optimal energy management”, Mathematics and Computers in Simulation, vol. 158, pp. 248-263, 2019, doi: https://doi.org/10.1016/j.matcom.2018.09.012
  13. C. Nuchturee, T. Li, H. Xia, “Energy efficiency of integrated electric propulsion for ships–A review”, Renewable and Sustainable Energy Reviews, vol. 134, pp. 1-25, 2020, doi: https://doi.org/10.1016/j.rser.2020.110145
  14. V. Biert y et al, “A review of fuel cell systems for maritime applications”, Journal of Power Sources, vol. 327, pp. 345-364, 2016, doi: https://doi.org/10.1016/j.jpowsour.2016.07.007
  15. Armada de Colombia, “Plan de Desarrollo Naval 2042”, Colombia , 2020.
  16. COTECMAR, “Concepto técnico, Resumen Diseño Contractual BALC-L”, Colombia, 2021.
  17. Institute of Electrical and Electronics Engineers, “IEEE 45 Recommended Practice for Electric Installations on Shipboard» IEEE, New York, 2002.
  18. MinEnergía, “Hoja de ruta del hidrógeno en Colombia”, Colombia, 2021.
  19. J. Andersson, S. Grönkvist, “Large-scale storage of hydrogen”, International journal of hydrogen energy, vol. 44, no. 23, pp. 11901-11919, 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.03.063
  20. M. Carmo, D. Fritz, J. Mergel, “A comprehensive review on PEM water electrolysis”, International journal of hydrogen energy, vol. 38, nº 12, pp. 4901-4934, 2013, doi: https://doi.org/10.1016/j.ijhydene.2013.01.151
  21. N. Shakeri, M. Zadeh, J. Nielsen, “Hydrogen fuel cells for ship electric propulsion: Moving toward greener ships”, IEEE Electrification Magazine, vol. 8, nº 2, pp. 27-43, 2020, doi: https://doi.org/10.1109/MELE.2020.2985484
  22. M. Becherif, et al, “Hydrogen energy storage: new techno-economic emergence solution analysis”, Energy Procedia, vol. 74, pp. 371-380, 2015, doi: https://doi.org/10.1016/j.egypro.2015.07.629
  23. M. Okundamiya, “Integration of photovoltaic and hydrogen fuel cell system for sustainable energy harvesting of a university ICT infrastructure with an irregular electric grid”, Energy Conversion and Management, vol. 250, 2021, doi: https://doi.org/10.1016/j.enconman.2021.114928
  24. A. Lanz, J. Heffel, C. Messer, “Hydrogen fuel cell engines and related technologies”, United States Federal Transit Administration (FTA), 2001.
  25. L. V. Biert, M. Godjevac, K. Visser, P. V. Aravind, “A review of fuel cell systems for maritime applications”, Journal of Power Sources, vol. 327, pp. 345-364, 2016, doi: https://doi.org/10.1016/j.jpowsour.2016.07.007
  26. S. M. J. M. Z. Katalenich, «Toward battery electric and hydrogen fuel cell military vehicles for land, air, and sea» Energy, vol. 254, 2022, doi: https://doi.org/10.1016/j.energy.2022.124355
  27. American Bureau of Shipping, “Guide for fuel cell power systems for marine and offshore applications”, ABS, Texas, 2019, [En línea]. Disponible en: https://img.fuelcellsworks.com/wp-content/uploads/2019/12/Fuel-Cell-Power-Systems-For-Marine-and-Offshore-Applications.pdf