Vol. 22 No. 3 (2023): Revista UIS Ingenierías
Articles

Formation of Polyacetylene Films on Copper Substrate by Abnormal Glow Discharge

Armando Sarmiento-Santos
Universidad Pedagógica y Tecnológica de Colombia
Jovanny A. Gómez-Castaño
Universidad Pedagógica y Tecnológica de Colombia
Brenda Alvarez-Luna
Universitat Jaume I
William Redondo-Lancheros
Universidad Pedagógica y Tecnológica de Colombia
Jaime García-Zúniga
Universidad Pedagógica y Tecnológica de Colombia

Published 2023-09-12

Keywords

  • Abnormal Glow Discharge,
  • Corrosion Resistance,
  • Polymers,
  • Acetylene,
  • Copper Substrate

How to Cite

Sarmiento-Santos , A., Gómez-Castaño, J. A. ., Alvarez-Luna , B., Redondo-Lancheros, W. ., & García-Zúniga , J. . (2023). Formation of Polyacetylene Films on Copper Substrate by Abnormal Glow Discharge. Revista UIS Ingenierías, 22(3), 189–196. https://doi.org/10.18273/revuin.v22n3-2023014

Abstract

The formation of polymeric films by plasma has become an alternative for the coating of metallic materials that require varying their surface characteristics and improving their resistance to corrosion; because by this method it is possible, in principle, to polymerize any gaseous hydrocarbon. In this work, the study of the formation of acetylene polymer films on a copper substrate, previously treated in an abnormal luminescent discharge regime in argon-hydrogen atmosphere, is presented. The polymeric formation was carried out in a continuum current abnormal glow discharge in an atmosphere of 60% Ar, 35% H2 and 5% C2H2 at a pressure of 2 Torr, at a temperature of 600 °C and with deposition times between 5 and 120 s. The structural and morphological analysis of the polymeric film deposited at different temperatures was performed by Infrared Spectroscopy and Scanning Electron Microscopy. Additionally, a characterization of the materials was carried out using corrosion resistance analysis.

Downloads

Download data is not yet available.

References

  1. A. Fihri, E. Bovero, A. Al-Shahrani, A. Al-Ghamdi, G. Alabedi, “Recent progress in superhydrophobic coatings used for steel protection: A review,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 520, pp. 378–390, 2017, doi: https://doi.org/10.1016/j.colsurfa.2016.12.057
  2. H. Yasuda, T. Hirotsu, “Critical evaluation of conditions of plasma polymerization,” J. Polym. Sci. Polym. Chem. Ed., vol. 16, no. 4, pp. 743–759, Apr. 1978, doi: https://doi.org/10.1002/pol.1978.170160403
  3. H. Yasuda, Luminous Chemical Vapor Deposition and Interface Engineering. Portland: Ringgold, Inc, 2005.
  4. G. S. Schoepfle, L. H. Connell, “Effect of Cathode Rays on Hydrocarbon Oils and on Paper A Contribution to the Study of the Mechanism of Cable Determination,” Ind. Eng. Chem., vol. 21, no. 6, pp. 529–537, 1929, doi: https://doi.org/10.1021/ie50234a004
  5. T. Williams, M. W. Hayes, “Formation of Thin Polymer Films in a Glow Discharge,” Nature, vol. 216, no. 5115, pp. 614–615, 1967, doi: https://doi.org/10.1038/216614a0
  6. E. G. Linder, A. P. Davis, “Reactions of Hydrocarbons in the Glow Discharge,” J. Phys. Chem., vol. 35, no. 12, pp. 3649–3672, Dec. 1931, doi: https://doi.org/10.1021/j150330a017
  7. H. J. Jang, B. J. Shin, E. Y. Jung, G. T. Bae, J. Y. Kim, H.-S. Tae, “Polypyrrole film synthesis via solution plasma polymerization of liquid pyrrole,” Appl. Surf. Sci., vol. 608, p. 155129, 2023, doi: https://doi.org/10.1016/j.apsusc.2022.155129
  8. P. Brault, M. Ji, D. Sciacqua, F. Poncin‐Epaillard, J. Berndt, E. Kovacevic, “Insight into acetylene plasma deposition using molecular dynamics simulations,” Plasma Process. Polym., vol. 19, no. 1, p. 2100103, 2022, doi: https://doi.org/10.1002/ppap.202100103
  9. Y. Wang et al., “Tunable surface wrinkling on shape memory polymers with application in smart micromirror,” Appl. Phys. Lett., vol. 114, no. 19, May 2019, doi: https://doi.org/10.1063/1.5096767
  10. T.L. Chen, C.Y. Huang, Y.T. Xie, Y.Y. Chiang, Y.M. Chen, H.Y. Hsueh, “Bioinspired Durable Superhydrophobic Surface from a Hierarchically Wrinkled Nanoporous Polymer,” ACS Appl. Mater. Interfaces, vol. 11, no. 43, pp. 40875–40885, 2019, doi: https://doi.org/10.1021/acsami.9b14325
  11. J. H. Nobbs, “Kubelka—Munk Theory and the Prediction of Reflectance,” Rev. Prog. Color. Relat. Top., vol. 15, no. 1, pp. 66–75, 1985, doi: https://doi.org/10.1111/j.1478-4408.1985.tb03737.x
  12. H. G. Hecht, “The interpretation of diffuse reflectance spectra,” J. Res. Natl. Bur. Stand. Sect. A Phys. Chem., vol. 80A, no. 4, p. 567, 1976, doi: https://doi.org/10.6028/jres.080A.056
  13. J. M. Hidalgo-Herrador, Z. Tišler, P. Hajková, L. Soukupová, L. Zárybnická, K. Černá, “Cold Plasma and Acid Treatment Modification Effects on Phonolite,” Acta Chim. Slov., vol. 64, no. 3, pp. 598–602, Sep. 2017, doi: https://doi.org/10.17344/acsi.2017.3343
  14. C.M. Chan, T.M. Ko, H. Hiraoka, “Polymer surface modification by plasmas and photons,” Surf. Sci. Rep., vol. 24, no. 1–2, pp. 1–54, 1996, doi: https://doi.org/10.1016/0167-5729(96)80003-3
  15. H. Yasuda, M. O. Bumgarner, H. C. Marsh, N. Morosoff, “Plasma polymerization of some organic compounds and properties of the polymers,” J. Polym. Sci. Polym. Chem. Ed., vol. 14, no. 1, pp. 195–224, 1976, doi: https://doi.org/10.1002/pol.1976.170140118
  16. S. Zhu, T. Li, W.-B. Cai, M. Shao, “CO 2 Electrochemical Reduction As Probed through Infrared Spectroscopy,” ACS Energy Lett., vol. 4, no. 3, pp. 682–689, 2019, doi: https://doi.org/10.1021/acsenergylett.8b02525
  17. B. Hudson, “Polyacetylene: Myth and Reality,” Materials (Basel)., vol. 11, no. 2, p. 242, 2018, doi: https://doi.org/10.3390/ma11020242
  18. A. G. Zelinsky, B. Y. Pirogov, O. A. Yurjev, “Open circuit potential transients and electrochemical quartz crystal microgravimetry measurements of dissolution of copper in acidic sulfate solutions,” Corros. Sci., vol. 46, no. 5, pp. 1083–1093, 2004, doi: https://doi.org/10.1016/j.corsci.2003.09.008
  19. G. Berthomé, B. Malki, B. Baroux, “Pitting transients analysis of stainless steels at the open circuit potential,” Corros. Sci., vol. 48, no. 9, pp. 2432–2441, 2006, doi: https://doi.org/10.1016/j.corsci.2005.09.012
  20. S. Liu, L. Gu, H. Zhao, J. Chen, H. Yu, “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings,” J. Mater. Sci. Technol., vol. 32, no. 5, pp. 425–431, 2016, doi: https://doi.org/10.1016/j.jmst.2015.12.017
  21. H. Shen, L. Wang, J. Sun, “Effect of plasma nitriding at low temperature on the corrosion resistance and conductivity of 2205 duplex stainless steel,” Surf. Eng., vol. 37, no. 6, pp. 749–754, 2021, doi: https://doi.org/10.1080/02670844.2020.1792206