Published 2023-07-11
Keywords
- robotics,
- motion planing,
- simulation,
- automation,
- artificial vision
- Robodk ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
This paper proposes the geometry-based polylinal routing method as a solution for motion planning in object sorting exercises in manufacturing processes. This algorithm is based on geometric properties that arise from the interaction among objects within the configuration space. The method proposed in this paper, during its experimental phase, successfully generated smooth routes with a processing time ranging from 62.5-125 ms on a computer equipped with an AMD Ryzen 7 2700X Eight-Core 3.70 GHz processor and 16 GB of RAM. When compared to the RRT algorithm, it exhibits a higher efficiency of 38% to 48%, resulting in a reduction in iterative processes and a shorter response time. Therefore, the proposed method presents a viable solution for addressing motion planning scenarios in object sorting exercises.
Downloads
References
- E. Barleta, G. Pérez, R. Sánchez, “La revolución industrial 4.0 y el advenimiento de una logística 4.0,” p. 15, 2020.
- L. Y. Becerra Sánchez, “Tecnologías de la información y las Comunicaciones en la era de la cuarta revolución industrial: Tendencias Tecnológicas y desafíos en la educación en Ingeniería,” Entre Cienc. e Ing., vol. 14, no. 28, pp. 76–81, 2020, doi: https://doi.org/10.31908/19098367.2057
- S. M. Ross, Simulation. Academic Press, 2022.
- R. S. Kenett, G. Vicario, “Challenges and Opportunities in Simulations and Computer Experiments in Industrial Statistics: An Industry 4.0 Perspective,” Adv. Theory Simulations, vol. 4, no. 2, p. 2000254, 2021, doi: https://doi.org/10.1002/adts.202000254
- López de Lacalle, Posada, “Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes,” Appl. Sci., vol. 9, no. 20, p. 4323, 2019, doi: https://doi.org/10.3390/app9204323
- A. El Wahabi, I. H. Baraka, S. Hamdoune, and K. El Mokhtari, “Detection and Control System for Automotive Products Applications by Artificial Vision Using Deep Learning,” Advanced Intelligent Systems for Sustainable Development (AI2SD’2019), 2020, pp. 224–241. doi: https://doi.org/10.1007/978-3-030-36671-1_20
- A. N. Abbas, M. A. Irshad, H. H. Ammar, “Experimental Analysis of Trajectory Control Using Computer Vision and Artificial Intelligence for Autonomous Vehicles” arXiv - CS - Artificial Intelligence, 2021.
- H. Zhang, W. Lin, A. Chen, “Path Planning for the Mobile Robot: A Review,” Symmetry (Basel)., vol. 10, no. 10, p. 450, 2018, doi: https://doi.org/10.3390/sym10100450
- S. M. Alcántara Tacora, E. D. López Zapata, J. Peralta Toribio, R. R. Rodríguez Bustinza, “Planificación de movimiento mediante algoritmo de campos potenciales con optimización de parámetros aplicado a un manipulador antropomórfico de 6 GLD,” TECNIA, vol. 21, no. 2, 2021, doi: https://doi.org/10.21754/tecnia.v21i2.848
- J. Zhong, T. Wang, L. Cheng, “Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement learning and inverse kinematics,” Complex Intell. Syst., vol. 8, no. 3, pp. 1899–1912, 2022, doi: https://doi.org/10.1007/s40747-021-00366-1
- L. E. Kavraki, P. Svestka, J.-C. Latombe, M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, 1996, doi: https://doi.org/10.1109/70.508439
- S. M. LaValle, “Rapidly-exploring random trees: a new tool for path planning,” Annu. Res. Rep., 1998.
- R. K. Jenamani, R. Kumar, P. Mall, K. Kedia, “Robotic Motion Planning using Learned Critical Sources and Local Sampling,” 2020 IEEE International Conference on Robotics and Automation, doi: https://doi.org/10.48550/arXiv.2006.04194
- H. Zhang, Y. Wang, J. Zheng, J. Yu, “Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments,” IEEE Access, vol. 6, pp. 53296–53306, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2871222
- X. Cao, X. Zou, C. Jia, M. Chen, Z. Zeng, “RRT-based path planning for an intelligent litchi-picking manipulator,” Comput. Electron. Agric., vol. 156, pp. 105–118, 2019, doi: https://doi.org/10.1016/j.compag.2018.10.031
- S. Chakraborty, P. S. Aithal, “ABB IRB 120-30.6 Build Procedure In RoboDK,” Int. J. Manag. Technol. Soc. Sci., vol. 6, no. 2, pp. 256–264, 2021, doi: https://doi.org/10.5281/zenodo.5782759
- P. Tangseng, Z. Wu, K. Yamaguchi, “Looking at Outfit to Parse Clothing,” Computer Vision and Pattern Recognition, 2017, doi: https://doi.org/10.48550/arXiv.1703.01386
- A. Garbev, A. Atanassov, “Comparative Analysis of RoboDK and Robot Operating System for Solving Diagnostics Tasks in Off-Line Programming,” in 2020 International Conference Automatics and Informatics (ICAI), 2020, pp. 1–5. doi: https://doi.org/10.1109/ICAI50593.2020.9311332
- S. Karaman, E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011, doi: https://doi.org/10.1177/0278364911406761
- W. A. R. Ruiz, P. A. M. Herrera, J. P. S. Esquivel, “Tools in industry (ROBODK),” Zenodo, 2021. doi: https://doi.org/10.5281/zenodo.5768611