Vol. 22 No. 3 (2023): Revista UIS Ingenierías
Articles

Geometry-based polylinal routing for motion planning in object sorting

Pedro Alejandro Montaño-Herrera
Universidad Piloto de Colombia
Juan Pablo Sosa-Esquivel
Universidad Piloto de Colombia
Marco Antonio Jinete-Gómez
Universidad Piloto de Colombia

Published 2023-07-11

Keywords

  • robotics,
  • motion planing,
  • simulation,
  • automation,
  • artificial vision,
  • Robodk
  • ...More
    Less

How to Cite

Montaño-Herrera, P. A., Sosa-Esquivel , J. P. ., & Jinete-Gómez, M. A. . (2023). Geometry-based polylinal routing for motion planning in object sorting. Revista UIS Ingenierías, 22(3), 55–68. https://doi.org/10.18273/revuin.v22n3-2023005

Abstract

This paper proposes the geometry-based polylinal routing method as a solution for motion planning in object sorting exercises in manufacturing processes. This algorithm is based on geometric properties that arise from the interaction among objects within the configuration space. The method proposed in this paper, during its experimental phase, successfully generated smooth routes with a processing time ranging from 62.5-125 ms on a computer equipped with an AMD Ryzen 7 2700X Eight-Core 3.70 GHz processor and 16 GB of RAM. When compared to the RRT algorithm, it exhibits a higher efficiency of 38% to 48%, resulting in a reduction in iterative processes and a shorter response time. Therefore, the proposed method presents a viable solution for addressing motion planning scenarios in object sorting exercises.

Downloads

Download data is not yet available.

References

  1. E. Barleta, G. Pérez, R. Sánchez, “La revolución industrial 4.0 y el advenimiento de una logística 4.0,” p. 15, 2020.
  2. L. Y. Becerra Sánchez, “Tecnologías de la información y las Comunicaciones en la era de la cuarta revolución industrial: Tendencias Tecnológicas y desafíos en la educación en Ingeniería,” Entre Cienc. e Ing., vol. 14, no. 28, pp. 76–81, 2020, doi: https://doi.org/10.31908/19098367.2057
  3. S. M. Ross, Simulation. Academic Press, 2022.
  4. R. S. Kenett, G. Vicario, “Challenges and Opportunities in Simulations and Computer Experiments in Industrial Statistics: An Industry 4.0 Perspective,” Adv. Theory Simulations, vol. 4, no. 2, p. 2000254, 2021, doi: https://doi.org/10.1002/adts.202000254
  5. López de Lacalle, Posada, “Special Issue on New Industry 4.0 Advances in Industrial IoT and Visual Computing for Manufacturing Processes,” Appl. Sci., vol. 9, no. 20, p. 4323, 2019, doi: https://doi.org/10.3390/app9204323
  6. A. El Wahabi, I. H. Baraka, S. Hamdoune, and K. El Mokhtari, “Detection and Control System for Automotive Products Applications by Artificial Vision Using Deep Learning,” Advanced Intelligent Systems for Sustainable Development (AI2SD’2019), 2020, pp. 224–241. doi: https://doi.org/10.1007/978-3-030-36671-1_20
  7. A. N. Abbas, M. A. Irshad, H. H. Ammar, “Experimental Analysis of Trajectory Control Using Computer Vision and Artificial Intelligence for Autonomous Vehicles” arXiv - CS - Artificial Intelligence, 2021.
  8. H. Zhang, W. Lin, A. Chen, “Path Planning for the Mobile Robot: A Review,” Symmetry (Basel)., vol. 10, no. 10, p. 450, 2018, doi: https://doi.org/10.3390/sym10100450
  9. S. M. Alcántara Tacora, E. D. López Zapata, J. Peralta Toribio, R. R. Rodríguez Bustinza, “Planificación de movimiento mediante algoritmo de campos potenciales con optimización de parámetros aplicado a un manipulador antropomórfico de 6 GLD,” TECNIA, vol. 21, no. 2, 2021, doi: https://doi.org/10.21754/tecnia.v21i2.848
  10. J. Zhong, T. Wang, L. Cheng, “Collision-free path planning for welding manipulator via hybrid algorithm of deep reinforcement learning and inverse kinematics,” Complex Intell. Syst., vol. 8, no. 3, pp. 1899–1912, 2022, doi: https://doi.org/10.1007/s40747-021-00366-1
  11. L. E. Kavraki, P. Svestka, J.-C. Latombe, M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, 1996, doi: https://doi.org/10.1109/70.508439
  12. S. M. LaValle, “Rapidly-exploring random trees: a new tool for path planning,” Annu. Res. Rep., 1998.
  13. R. K. Jenamani, R. Kumar, P. Mall, K. Kedia, “Robotic Motion Planning using Learned Critical Sources and Local Sampling,” 2020 IEEE International Conference on Robotics and Automation, doi: https://doi.org/10.48550/arXiv.2006.04194
  14. H. Zhang, Y. Wang, J. Zheng, J. Yu, “Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments,” IEEE Access, vol. 6, pp. 53296–53306, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2871222
  15. X. Cao, X. Zou, C. Jia, M. Chen, Z. Zeng, “RRT-based path planning for an intelligent litchi-picking manipulator,” Comput. Electron. Agric., vol. 156, pp. 105–118, 2019, doi: https://doi.org/10.1016/j.compag.2018.10.031
  16. S. Chakraborty, P. S. Aithal, “ABB IRB 120-30.6 Build Procedure In RoboDK,” Int. J. Manag. Technol. Soc. Sci., vol. 6, no. 2, pp. 256–264, 2021, doi: https://doi.org/10.5281/zenodo.5782759
  17. P. Tangseng, Z. Wu, K. Yamaguchi, “Looking at Outfit to Parse Clothing,” Computer Vision and Pattern Recognition, 2017, doi: https://doi.org/10.48550/arXiv.1703.01386
  18. A. Garbev, A. Atanassov, “Comparative Analysis of RoboDK and Robot Operating System for Solving Diagnostics Tasks in Off-Line Programming,” in 2020 International Conference Automatics and Informatics (ICAI), 2020, pp. 1–5. doi: https://doi.org/10.1109/ICAI50593.2020.9311332
  19. S. Karaman, E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011, doi: https://doi.org/10.1177/0278364911406761
  20. W. A. R. Ruiz, P. A. M. Herrera, J. P. S. Esquivel, “Tools in industry (ROBODK),” Zenodo, 2021. doi: https://doi.org/10.5281/zenodo.5768611