Vol. 21 No. 4 (2022): Revista UIS Ingenierías
Articles

Study of the humidity effect on the mechanical properties of PVOH+H3PO2/TiO2 proton exchange membranes

Nadia Combarizao
Justus-Liebig-Universität Giessen
Jesus Evelio Diosa-Astaiza
Universidad del Valle
Diego Peña-Lara
Universidad del Valle
3D

Published 2022-10-31

Keywords

  • elastic modulus,
  • stress,
  • polymeric composites

How to Cite

Combarizao , N. ., Diosa-Astaiza, J. E. ., & Peña-Lara , D. . (2022). Study of the humidity effect on the mechanical properties of PVOH+H3PO2/TiO2 proton exchange membranes. Revista UIS Ingenierías, 21(4), 63–70. https://doi.org/10.18273/revuin.v21n4-2022006

Abstract

The elastic modulus of polymeric membranes based on PVOH + H3PO2 + TiO2 was studied as a function of relative humidity (%RH) and the volumetric fraction of water. Tensile stress-strain tests (nominal stress) were performed to determine Young's modulus, yield strength, break stress, and strain stress at a constant speed of 10 mm/min. The membrane’s acid concentration was kept constant at the molar concentration of high proton conduction P/OH = 0.3, and they were separated into two test groups, 5 wt. %TiO2 fillers, and without TiO2. For relative humidity between 8 and 94% RH, the membranes with TiO2 show an improvement in the elastic modulus concerning those without TiO2 doping, but they have no significant difference at 100% RH, under a confidence level of 95%. In general, the data analysis indicates that the mechanical properties and the electrical properties of the membranes previously reported are directly related to the absorption of water contained in the hydrophilic groups that expand during swelling. In contrast, the hydrophobic solid-like polymer backbone and the TiO2 nanoparticle fillers maintain structural stability.

Downloads

Download data is not yet available.

References

  1. Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn, W. B. Johnson, “An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane,” Mater. Sci. Eng. A, vol. 425, no. 1–2, pp. 297–304, 2006, doi: http://doi.org.10.1016/j.msea.2006.03.055
  2. S. Cleghom, W. J. Kolde, “Catalyst coated composite membranes,” in Handbook of Fuel Cells - Fundamentals, Technology and Application, W. Vielstich, A. Lamm, H. A. Gasteiger, Eds. Chichester: John Wiley & Sons, Ltd, 2003, pp. 566–575.
  3. S. F. Burlatsky et al., “A mathematical model for predicting the life of polymer electrolyte fuel cell membranes subjected to hydration cycling,” J. Power Sources, vol. 215, pp. 135–144, 2012, doi: http://doi.org.10.1016/j.jpowsour.2012.05.005
  4. A. Kusoglu, A. M. Karlsson, M. H. Santare, “Structure-property relationship in ionomer membranes,” Polymer (Guildf)., vol. 51, no. 6, pp. 1457–1464, 2010, doi: http://doi.org.10.1016/j.polymer.2010.01.046
  5. S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. Lau, J. H. Lee, “Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges,” Prog. Polym. Sci., vol. 36, no. 6, pp. 813–843, 2011, doi: http://doi.org.10.1016/j.progpolymsci.2011.01.003
  6. D. C. Dayton, “Fuel cell integration-a study of the impacts of gas quality and impurities,” Golden, CO (United States), 2001.
  7. M. B. Satterfield, J. B. Benziger, “Viscoelastic properties of Nafion at elevated temperature and humidity,” J. Polym. Sci. Part B Polym. Phys., vol. 47, no. 1, pp. 11–24, 2009, doi: http://doi.org.10.1002/polb.21608
  8. M. Vargas, R. Vargas, B. E. Mellander, “More studies on the PVAl+H3PO2+H2O proton conductor gels,” Electrochim. Acta, vol. 45, no. 8–9, pp. 1399–1403, 2000, doi: http://doi.org.10.1016/S0013-4686(99)00350-3
  9. I. Palacios, R. Castillo, R. A. Vargas, “Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)–KOH–H2O,” Electrochim. Acta, vol. 48, no. 14–16, pp. 2195–2199, 2003, doi: http://doi.org.10.1016/S0013-4686(03)00204-4
  10. V. H. Zapata, W. A. Castro, R. A. Vargas, B. E. Mellander, “More studies on the PVOH–LiH2PO4 polymer system,” Electrochim. Acta, vol. 53, no. 4, pp. 1476–1480, 2007, doi: http://doi.org.10.1016/j.electacta.2007.05.063
  11. W. A. Castro, V. H. Zapata, R. A. Vargas, B. E. Mellander, “Electrical conductivity relaxation in PVOH–LiClO4–Al2O3,” Electrochim. Acta, vol. 53, no. 4, pp. 1422–1426, 2007, doi: http://doi.org.10.1016/j.electacta.2007.05.066
  12. C. C. Yang, “Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC,” J. Memb. Sci., vol. 288, no. 1–2, pp. 51–60, 2007, doi: http://doi.org.10.1016/j.memsci.2006.10.048
  13. M. E. Fernández et al., “New polymer electrolyte based on PVAL‐LiOH‐Al 2 O 3 ‐H 2 O,” Phys. status solidi c, vol. 4, no. 11, pp. 4075–4080, doi: http://doi.org.10.1002/pssc.200675934
  14. M. E. Fernándeza, J. E. Castillo, F. Bedoya, J. E. Diosa, R. A. Vargas, “Dependence of the mechanical and electrical properties on the acid content in PVA+H3 PO2 +H2 O membranes,” Rev. Mex. Física, vol. 60, pp. 249–252, 2014.
  15. R. A. Vargas, A. Garcı́a, M. A. Vargas, “Phase behavior of complexes of PVA and acid salts,” Electrochim. Acta, vol. 43, no. 10–11, pp. 1271–1274, 1998, doi: http://doi.org.10.1016/S0013-4686(97)10029-9
  16. M. Ali, A. Gherissi, “Synthesis and characterization of the composite material PVA/Chitosan/5% sorbitol with different ratio of chitosan,” Int. J. Mech. Mechatronics Eng., vol. 17, pp. 15–28, 2017.
  17. R. P. Gonçalves, W. H. Ferreira, R. F. Gouvêa, C. T. Andrade, “Effect of Chitosan on the Properties of Electrospun Fibers From Mixed Poly(Vinyl Alcohol)/Chitosan Solutions,” Mater. Res., vol. 20, no. 4, pp. 984–993, 2017, doi: http://doi.org.10.1590/1980-5373-mr-2016-0618
  18. S. Aziz, O. Abdullah, S. Hussein, H. Ahmed, “Effect of PVA Blending on Structural and Ion Transport Properties of CS:AgNt-Based Polymer Electrolyte Membrane,” Polymers (Basel), vol. 9, no. 11, p. 622, 2017, doi: http://doi.org.10.3390/polym9110622
  19. M. Benítez, J. E. Diosa, R. A. Vargas, “Effect of H3PO2 on the mechanical, thermal, and electrical properties of polymers based on poly (vinyl alcohol) (PVA) and chitosan (CS),” Ionics (Kiel), vol. 24, no. 7, pp. 2029–2034, 2018, doi: http://doi.org.10.1007/s11581-018-2465-y
  20. D. A. Quintana, E. Baca, E. Mosquera, R. A. Vargas, J. E. Diosa, “Improving the ionic conductivity in nanostructured membranes based on poly(vinyl alcohol) (PVA), chitosan (CS), phosphoric acid (H3PO4), and niobium oxide (Nb2O5),” Ionics (Kiel), vol. 25, no. 3, pp. 1131–1136, 2019, doi: http://doi.org.10.1007/s11581-018-2764-3 .
  21. E. E. Ruiz Gómez, J. H. Mina Hernández, J. E. Diosa Astaiza, “Development of a Chitosan/PVA/TiO2 Nanocomposite for Application as a Solid Polymeric Electrolyte in Fuel Cells,” Polymers (Basel), vol. 12, no. 8, p. 1691, 2020, doi: http://doi.org.10.3390/polym12081691
  22. D. Permana, E. Ilimu, N. M. Faariu, A. Setyawati, L. O. Kadidae, L.O.A.N. Ramadhan, “Synthesis and Characterization of Chitosan-Polyvinyl Alcohol-Fe2O3 Composite Membrane for DMFC Application,” Makara J. Sci., vol. 24, no. 1, pp. 1–9, 2020, doi: http://doi.org.10.7454/mss.v24i1.11723
  23. J. Vera, E. Mosquera-Vargas, J. E. Diosa, “Thermal, electrical and structural study of polymeric membranes based on poly(vinyl alcohol), chitosan and phosphoric acid,” Appl. Phys. A, vol. 128, no. 5, p. 377, 2022, doi: http://doi.org.10.1007/s00339-022-05526-9