Concentration levels by PM2.5 through low-cost sensors. Case study: Pamplona, Colombia
Published 2023-07-04
Keywords
- air quality,
- GIS,
- IDW,
- laser method,
- low-cost sensors
- PM2.5,
- public health,
- typing,
- USEPA,
- WHO ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The use of low-cost sensors has increased in recent years to study air pollution in cities. This work was carried out with the objective of measuring PM2.5 concentration levels in the city of Pamplona and analyzing the concentrations to which the population is exposed, since there is no official monitoring station in the city. Four low-cost sensors of the SENSIRION brand, model SPS30, were used, which were located following the guidelines recommended by the United States Environmental Protection Agency. Statistical tests were also performed on the data and the behavior of PM2.5 concentrations was analyzed for the period from July to September 2022. The monitoring results show that PM2.5 concentrations are well below the maximum permissible limit of Colombian legislation of 37 μg/m3 (24-hour average), however, it was observed that, on holidays such as the Independence Day celebration, concentrations increased to close to reach the reference limit imposed by the World Health Organization (15 μg/m3). In addition, it was observed through spatial distribution maps that the maximum concentrations are centered in the north of the city, where there is a higher density of automobile traffic and where the main educational centers are located. In this way, this study made it possible to obtain an indicative of PM2.5 concentrations, creating a registry for air quality management, as well as an information base with data available on the web for public access.
Downloads
References
- S. Lopez-Restrepo, A. Yarce, N. Pinel, O. L. Quintero, A. Segers, A. W. Heemink, “Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia,” Atmosphere (Basel), vol. 12, no. 1, p. 91, 2021, doi: https://doi.org/10.3390/atmos12010091
- H.-Y. Liu et al., “Respiratory Disease in Relation to Outdoor Air Pollution in Kanpur, India,” Arch. Environ. Occup. Health, vol. 68, no. 4, pp. 204–217, 2013, doi: https://doi.org/10.1080/19338244.2012.701246
- H.-Y. Liu, D. Dunea, S. Iordache, A. Pohoata, “A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases,” Atmosphere (Basel), vol. 9, no. 4, p. 150, 2018, doi: https://doi.org/10.3390/atmos9040150
- OMS, “Calidad del aire ambiente (exterior),” 2021. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- R. Meléndez, S. N. Bolívar, R. Rojano, “Imputación de valores perdidos y detección de valores atípicos en datos funcionales: una aplicación con datos de PM10,” Rev. UIS Ing., vol. 19, no. 2, pp. 1–10, 2020, doi: https://doi.org/10.18273/revuin.v19n2-2020001
- X. Su, L. Sutarlie, X. J. Loh, “Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols,” Chem. – An Asian J., vol. 15, no. 24, pp. 4241–4255, 2020, doi: https://doi.org/10.1002/asia.202001051
- T.-C. Le et al., “On the concentration differences between PM2.5 FEM monitors and FRM samplers,” Atmos. Environ., vol. 222, p. 117138, 2020, doi: https://doi.org/10.1016/j.atmosenv.2019.117138
- A. Masic, D. Bibic, B. Pikula, A. Blazevic, J. Huremovic, S. Zero, “Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution,” Atmos. Meas. Tech., vol. 13, no. 12, pp. 6427–6443, 2020, doi: https://doi.org/10.5194/amt-13-6427-2020
- L. Bai et al., “Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing,” Aerosol Air Qual. Res., vol. 20, no. 2, pp. 242–253, 2020, doi: https://doi.org/10.4209/aaqr.2018.11.0424
- M. Tagle et al., “Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile,” Environ. Monit. Assess., vol. 192, no. 3, p. 171, 2020, doi: https://doi.org/10.1007/s10661-020-8118-4
- A. Kumar and B. R. Gurjar, “Low-Cost Sensors for Air Quality Monitoring in Developing Countries – A Critical View,” Asian J. Water, Environ. Pollut., vol. 16, no. 2, pp. 65–70, 2019, doi: https://doi.org/10.3233/AJW190021
- V. M. Alvarez Narvaez, E. Quiñones Bolaños, M. E. Huertas Bolaños, C. A. Suárez, J. Berdugo Arrieta, D. Ramirez Rivas, “Metodología para la selección de sitios de monitoreo atmosférico en zonas urbanas afectada por las emisiones de fuentes móviles.,” Rev. UIS Ing., vol. 15, no. 2, pp. 73–84, 2017, doi: https://doi.org/10.18273/revuin.v15n2-2016006
- F. Ahangar, F. Freedman, A. Venkatram, “Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps,” Int. J. Environ. Res. Public Health, vol. 16, no. 7, p. 1252, 2019, doi: https://doi.org/10.3390/ijerph16071252
- GOV, “Identificación del municipio: Pamplona.” https://www.pamplona-nortedesantander.gov.co/MiMunicipio/Paginas/Informacion-del-Municipio.aspx
- Newark An Avnet Company, “Sensor de Partículas Sensirion - SPS30,” 2018. https://mexico.newark.com/sensirion/sps30/particulate-sensor-dust-0-5um/dp/71AC4577?ICID=I-RP-STM7REC-0
- USEPA, “A Guide to Siting and Installing Air Sensors,” 2022. https://www.epa.gov/air-sensor-toolbox/guide-siting-and-installing-air-sensors
- MAVDT, “Manual de diseño de sistemas de vigilancia de la calidad del aire.” 2010. https://www.minambiente.gov.co/wp-content/uploads/2021/06/Protocolo_Calidad_del_Aire_-_Manual_Diseno.pdf
- P. A. Monroy, J. C. R. Vargas, E. G. Gonzalez, “Preparation of the emissions inventory and modeling of the dispersion of criteria pollutants from mobile sources in the municipality of Pamplona, Norte de Santander,” in 2021 Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Pública (CASAP), 2021, pp. 1–4. doi: https://doi.org/10.1109/CASAP54985.2021.9703393
- MAVDT, “Manual de operación de sistemas de vigilancia de la calidad del aire” Bogotá, 2008.
- E. A. Roberts, R. L. Sheley, R. L. Lawrence, “Using sampling and inverse distance weighted modeling for mapping invasive plants,” West. North Am. Nat., vol. 64, pp. 312–323, 2004.
- MADS, “Norma de calidad del aire ambiente - Resolución 2254 de 2017.” 2017. [Online]. Available: http://www.ideam.gov.co/documents/51310/527391/2.+Resolución+2254+de+2017+-+Niveles+Calidad+del+Aire..pdf/c22a285e-058e-42b6-aa88-2745fafad39f#:~:text=La presente resolución establece la,a los contaminantes en la
- WHO, “WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.” 2021. [Online]. Available: https://www.who.int/publications/i/item/9789240034228
- C. Manchanda et al., “Chemical speciation and source apportionment of ambient PM2.5 in New Delhi before, during, and after the Diwali fireworks,” Atmos. Pollut. Res., vol. 13, no. 6, p. 101428, 2022, doi: https://doi.org/10.1016/j.apr.2022.101428
- R. R. Behera, D. R. Satapathy, A. Majhi, and C. R. Panda, “Spatiotemporal variation of atmospheric pollution and its plausible sources in an industrial populated city, Bay of Bengal, Paradip, India,” Urban Clim., vol. 37, p. 100860, 2021, doi: https://doi.org/10.1016/j.uclim.2021.100860
- C. Falzone, J. Muller, A.-C. Romain, “Influence of the Lockdown on PM2.5 Concentrations around an Urban School in the South of Belgium,” Atmosphere (Basel)., vol. 12, no. 10, p. 1333, 2021, doi: https://doi.org/10.3390/atmos12101333
- S. Kimbrough et al., “The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project,” Chemosensors, vol. 7, no. 2, p. 26, 2019, doi: https://doi.org/10.3390/chemosensors7020026
- European Centre for Medium-Range Weather Forecasts, “ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid).” Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder CO, 2019, doi: https://doi.org/10.5065/BH6N-5N20