Vol. 22 No. 3 (2023): Revista UIS Ingenierías
Articles

Concentration levels by PM2.5 through low-cost sensors. Case study: Pamplona, Colombia

Carlos Alexis Bonilla-Granados
Universidad de Pamplona
Alba Yajaira Sánchez-Delgado
Universidad de Pamplona
Yrany Rubio-Gómez
Universidad Nacional Autonóma de México
Mauro Cortéz-Huerta
Universidad Nacional Autonóma de México

Published 2023-07-04

Keywords

  • air quality,
  • GIS,
  • IDW,
  • laser method,
  • low-cost sensors,
  • PM2.5,
  • public health,
  • typing,
  • USEPA,
  • WHO
  • ...More
    Less

How to Cite

Bonilla-Granados , C. A., Sánchez-Delgado, A. Y., Rubio-Gómez, Y. ., & Cortéz-Huerta, M. (2023). Concentration levels by PM2.5 through low-cost sensors. Case study: Pamplona, Colombia. Revista UIS Ingenierías, 22(3), 29–38. https://doi.org/10.18273/revuin.v22n3-2023003

Abstract

The use of low-cost sensors has increased in recent years to study air pollution in cities. This work was carried out with the objective of measuring PM2.5 concentration levels in the city of Pamplona and analyzing the concentrations to which the population is exposed, since there is no official monitoring station in the city.  Four low-cost sensors of the SENSIRION brand, model SPS30, were used, which were located following the guidelines recommended by the United States Environmental Protection Agency. Statistical tests were also performed on the data and the behavior of PM2.5 concentrations was analyzed for the period from July to September 2022. The monitoring results show that PM2.5 concentrations are well below the maximum permissible limit of Colombian legislation of 37 μg/m3 (24-hour average), however, it was observed that, on holidays such as the Independence Day celebration, concentrations increased to close to reach the reference limit imposed by the World Health Organization (15 μg/m3). In addition, it was observed through spatial distribution maps that the maximum concentrations are centered in the north of the city, where there is a higher density of automobile traffic and where the main educational centers are located. In this way, this study made it possible to obtain an indicative of PM2.5 concentrations, creating a registry for air quality management, as well as an information base with data available on the web for public access.

 

Downloads

Download data is not yet available.

References

  1. S. Lopez-Restrepo, A. Yarce, N. Pinel, O. L. Quintero, A. Segers, A. W. Heemink, “Urban Air Quality Modeling Using Low-Cost Sensor Network and Data Assimilation in the Aburrá Valley, Colombia,” Atmosphere (Basel), vol. 12, no. 1, p. 91, 2021, doi: https://doi.org/10.3390/atmos12010091
  2. H.-Y. Liu et al., “Respiratory Disease in Relation to Outdoor Air Pollution in Kanpur, India,” Arch. Environ. Occup. Health, vol. 68, no. 4, pp. 204–217, 2013, doi: https://doi.org/10.1080/19338244.2012.701246
  3. H.-Y. Liu, D. Dunea, S. Iordache, A. Pohoata, “A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases,” Atmosphere (Basel), vol. 9, no. 4, p. 150, 2018, doi: https://doi.org/10.3390/atmos9040150
  4. OMS, “Calidad del aire ambiente (exterior),” 2021. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  5. R. Meléndez, S. N. Bolívar, R. Rojano, “Imputación de valores perdidos y detección de valores atípicos en datos funcionales: una aplicación con datos de PM10,” Rev. UIS Ing., vol. 19, no. 2, pp. 1–10, 2020, doi: https://doi.org/10.18273/revuin.v19n2-2020001
  6. X. Su, L. Sutarlie, X. J. Loh, “Sensors and Analytical Technologies for Air Quality: Particulate Matters and Bioaerosols,” Chem. – An Asian J., vol. 15, no. 24, pp. 4241–4255, 2020, doi: https://doi.org/10.1002/asia.202001051
  7. T.-C. Le et al., “On the concentration differences between PM2.5 FEM monitors and FRM samplers,” Atmos. Environ., vol. 222, p. 117138, 2020, doi: https://doi.org/10.1016/j.atmosenv.2019.117138
  8. A. Masic, D. Bibic, B. Pikula, A. Blazevic, J. Huremovic, S. Zero, “Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution,” Atmos. Meas. Tech., vol. 13, no. 12, pp. 6427–6443, 2020, doi: https://doi.org/10.5194/amt-13-6427-2020
  9. L. Bai et al., “Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing,” Aerosol Air Qual. Res., vol. 20, no. 2, pp. 242–253, 2020, doi: https://doi.org/10.4209/aaqr.2018.11.0424
  10. M. Tagle et al., “Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile,” Environ. Monit. Assess., vol. 192, no. 3, p. 171, 2020, doi: https://doi.org/10.1007/s10661-020-8118-4
  11. A. Kumar and B. R. Gurjar, “Low-Cost Sensors for Air Quality Monitoring in Developing Countries – A Critical View,” Asian J. Water, Environ. Pollut., vol. 16, no. 2, pp. 65–70, 2019, doi: https://doi.org/10.3233/AJW190021
  12. V. M. Alvarez Narvaez, E. Quiñones Bolaños, M. E. Huertas Bolaños, C. A. Suárez, J. Berdugo Arrieta, D. Ramirez Rivas, “Metodología para la selección de sitios de monitoreo atmosférico en zonas urbanas afectada por las emisiones de fuentes móviles.,” Rev. UIS Ing., vol. 15, no. 2, pp. 73–84, 2017, doi: https://doi.org/10.18273/revuin.v15n2-2016006
  13. F. Ahangar, F. Freedman, A. Venkatram, “Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps,” Int. J. Environ. Res. Public Health, vol. 16, no. 7, p. 1252, 2019, doi: https://doi.org/10.3390/ijerph16071252
  14. GOV, “Identificación del municipio: Pamplona.” https://www.pamplona-nortedesantander.gov.co/MiMunicipio/Paginas/Informacion-del-Municipio.aspx
  15. Newark An Avnet Company, “Sensor de Partículas Sensirion - SPS30,” 2018. https://mexico.newark.com/sensirion/sps30/particulate-sensor-dust-0-5um/dp/71AC4577?ICID=I-RP-STM7REC-0
  16. USEPA, “A Guide to Siting and Installing Air Sensors,” 2022. https://www.epa.gov/air-sensor-toolbox/guide-siting-and-installing-air-sensors
  17. MAVDT, “Manual de diseño de sistemas de vigilancia de la calidad del aire.” 2010. https://www.minambiente.gov.co/wp-content/uploads/2021/06/Protocolo_Calidad_del_Aire_-_Manual_Diseno.pdf
  18. P. A. Monroy, J. C. R. Vargas, E. G. Gonzalez, “Preparation of the emissions inventory and modeling of the dispersion of criteria pollutants from mobile sources in the municipality of Pamplona, Norte de Santander,” in 2021 Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Pública (CASAP), 2021, pp. 1–4. doi: https://doi.org/10.1109/CASAP54985.2021.9703393
  19. MAVDT, “Manual de operación de sistemas de vigilancia de la calidad del aire” Bogotá, 2008.
  20. E. A. Roberts, R. L. Sheley, R. L. Lawrence, “Using sampling and inverse distance weighted modeling for mapping invasive plants,” West. North Am. Nat., vol. 64, pp. 312–323, 2004.
  21. MADS, “Norma de calidad del aire ambiente - Resolución 2254 de 2017.” 2017. [Online]. Available: http://www.ideam.gov.co/documents/51310/527391/2.+Resolución+2254+de+2017+-+Niveles+Calidad+del+Aire..pdf/c22a285e-058e-42b6-aa88-2745fafad39f#:~:text=La presente resolución establece la,a los contaminantes en la
  22. WHO, “WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.” 2021. [Online]. Available: https://www.who.int/publications/i/item/9789240034228
  23. C. Manchanda et al., “Chemical speciation and source apportionment of ambient PM2.5 in New Delhi before, during, and after the Diwali fireworks,” Atmos. Pollut. Res., vol. 13, no. 6, p. 101428, 2022, doi: https://doi.org/10.1016/j.apr.2022.101428
  24. R. R. Behera, D. R. Satapathy, A. Majhi, and C. R. Panda, “Spatiotemporal variation of atmospheric pollution and its plausible sources in an industrial populated city, Bay of Bengal, Paradip, India,” Urban Clim., vol. 37, p. 100860, 2021, doi: https://doi.org/10.1016/j.uclim.2021.100860
  25. C. Falzone, J. Muller, A.-C. Romain, “Influence of the Lockdown on PM2.5 Concentrations around an Urban School in the South of Belgium,” Atmosphere (Basel)., vol. 12, no. 10, p. 1333, 2021, doi: https://doi.org/10.3390/atmos12101333
  26. S. Kimbrough et al., “The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS): Integration of Low-Cost Sensors and Reference Grade Monitoring in a Complex Metropolitan Area. Part 1: Overview of the Project,” Chemosensors, vol. 7, no. 2, p. 26, 2019, doi: https://doi.org/10.3390/chemosensors7020026
  27. European Centre for Medium-Range Weather Forecasts, “ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid).” Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder CO, 2019, doi: https://doi.org/10.5065/BH6N-5N20