Published 2023-06-11
Keywords
- Teoría Cuántica,
- Segunda cuantización,
- Transformación de segundo orden,
- Bogoliubov-deGennes,
- Superconductividad
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In the present work we show the generalities of the classical field theory (CFT), we study its extension to the quantum field theory (QFT), where as an example of numerical analysis and combination with the field theory technique, we solve a system Klein-Gordon type (KGS) in two space-time dimensions (1+1) studying its stability through the spectral parameter λ(k), principle of convergence due to the parameters of the numerical network and the solution for the field ф (x;t), obtaining novel results. Also, we briefly study the technique of creation and destruction ladder operators from the perspective of the quantum harmonic oscillator, to define some properties and extensions to the problem in canonical quantization. Finally, we apply the topics studied to a problem of unconventional superconductivity in Nickelates compounds by solving the system of Bogoliubov-deGennes (BdG) Equations in the mean expansion of the field, obtaining the superconducting energy band.
Downloads
References
- H. Goldstein, J. L. Safko, C. P. Poole, Classical Mechanics: Pearson New International Edition. Pearson Education, 2014. [Online]. Available: https://books.google.com.co/books?id=Xr-pBwAAQBAJ
- F. Scheck, Mechanics: From Newton’s Laws to Deterministic Chaos. World Publishing Corporation, 1990. [Online]. Available: https://books.google.com.co/books?id=TgfyAAAAMAAJ
- S. T. Thornton, J. B. Marion, Classical Dynamics of Particles and Systems. Brooks/Cole, 2007. [Online]. Available: https://books.google.com.co/books?id=30rWGAAACAAJ
- E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, 1988. [Online]. Available: https://books.google.com.co/books?id=epH1hCB7N2MC
- R. Weinstock, Calculus of Variations: With Applications to Physics and Engineering. Dover Publications, 1974. [Online]. Available: https://books.google.com.co/books?id=6wSVuWH1PrsC
- R. Courant, D. Hilbert, Methods of Mathematical Physics. 1991.
- A. Zee, Quantum Field Theory in a Nutshell. Princeton University Press, 2003.
- W. F. Ammes, Numerical Methods for Partial Differential Equations. 2014.
- J. Kiusalaas, Numerical Methods in Engineering with MATLAB. Cambridge University Press, 2015.
- J. H. Mathews, K. D. Fink, Numerical Methods Using MATLAB. Prentice Hall, 1999. [Online]. Available: https://books.google.com.co/books?id=F1sZAQAAIAAJ
- S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists.
- J. A. Trangenstein, Numerical Solution of Hyperbolic Partial Differential Equations. Cambridge University Press, 2009. [Online]. Available: https://books.google.com.co/books?id=%5C_nlbj1cUgZgC
- S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods. Springer, 2003. [Online]. Available: https://books.google.com.co/books?id=mrmxylxQlPUC
- Y. Zhu, B. Guo, Numerical methods for partial differential equations: proceedings of a conference held in Shanghai, PR China, March 25-29, 1987, vol. 1297. Springer, 2006.
- T,Roubíček, Nonlinear Partial Differential Equations with Applications, vol. 153. Basel: Birkhäuser-Verlag, 2005. doi: https://doi.org/10.1007/3-7643-7397-0
- M. Dehghan, A. Shokri, “Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions,” J. Comput. Appl. Math., vol. 230, no. 2, pp. 400–410, 2009, doi: https://doi.org/10.1016/j.cam.2008.12.011
- D. Huang, G. Zou, L. W. Zhang, “Numerical Approximation of Nonlinear Klein-Gordon Equation Using an Element-Free Approach,” Math. Probl. Eng., vol. 2015, p. 548905, 2015, doi: https://doi.org/10.1155/2015/548905
- A. M. Wazwaz, “Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations,” Chaos, Solitons & Fractals, vol. 28, no. 4, pp. 1005–1013, 2006, doi: https://doi.org/10.1016/j.chaos.2005.08.145
- A. S. Botana, F. Bernardini, A. Cano, “Nickelate Superconductors: An Ongoing Dialog between Theory and Experiments,” J. Exp. Theor. Phys., vol. 132, no. 4, pp. 618–627, 2021, doi: https://doi.org/10.1134/S1063776121040026
- V. M. Katukuri, N. A. Bogdanov, O. Weser, J. van den Brink, A. Alavi, “Electronic correlations and magnetic interactions in infinite-layer NdNiO2,” Phys. Rev. B, vol. 102, no. 24, p. 241112, 2020, doi: https://doi.org/10.1103/PhysRevB.102.241112
- J. G. Bednorz, K. A. Müller, “Possible highTc superconductivity in the Ba−La−Cu−O system,” Zeitschrift für Phys. B Condens. Matter, vol. 64, no. 2, pp. 189–193, 1986, doi: https://doi.org/10.1007/BF01303701
- V. I. Anisimov, D. Bukhvalov, T. M. Rice, “Electronic structure of possible nickelate analogs to the cuprates,” Phys. Rev. B, vol. 59, no. 12, pp. 7901–7906, Mar. 1999, doi: https://doi.org/10.1103/PhysRevB.59.7901
- K. W. Lee and W. E. Pickett, “Infinite-layer LaNiO2:Ni1+ is notCu2+,” Phys. Rev. B, vol. 70, no. 16, p. 165109, 2004, doi: https://doi.org/10.1103/PhysRevB.70.165109
- M. Sarboland, A. Aminataei, “Numerical Solution of the Nonlinear Klein-Gordon Equation Using Multiquadric Quasi-interpolation Scheme,” Universal Journal of Applied Mathematics, 2015, doi: https://doi.org/10.13189/ujam.2015.030302
- C. J. Pethick, D. Pines, “Transport processes in heavy-fermion superconductors,” Phys. Rev. Lett., vol. 57, no. 1, pp. 118–121, 1986, doi: https://doi.org/10.1103/PhysRevLett.57.118
- Y. Gu, S. Zhu, X. Wang, J. Hu, H. Chen, “A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates,” Commun. Phys., vol. 3, no. 1, p. 84, 2020, doi: https://doi.org/10.1038/s42005-020-0347-x
- E. M. Nica, J. Krishna, R. Yu, Q. Si, A. S. Botana, O. Erten, “Theoretical investigation of superconductivity in trilayer square-planar nickelates,” Phys. Rev. B, vol. 102, no. 2, p. 20504, 2020, doi: https://doi.org/10.1103/PhysRevB.102.020504
- S. W. Zeng et al., “Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd(0.8)Sr(0.2)NiO(2) superconductors.,” Nat. Commun., vol. 13, no. 1, p. 743, 2022, doi: https://doi.org/10.1038/s41467-022-28390-w
- D. Ferenc Segedin et al., “Limits to the strain engineering of layered square-planar nickelate thin films,” Nat. Commun., vol. 14, no. 1, p. 1468, 2023, doi: https://doi.org/10.1038/s41467-023-37117-4
- C. A. Aguirre, M. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Rev. UIS Ing., vol. 19, no. 1, pp. 109–115, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020011
- C. Aguirre-Tellez, M. Rincón-Joya, J. J. Barba-Ortega, “Released power in a vortex-antivortex pairs annihilation process,” Rev. UIS Ing., vol. 20, no. 1, 2020, doi: https://doi.org/10.18273/revuin.v20n1-2021014
- C. A. Aguirre-Tellez, E. D. Valbuena-Niño, J. J. Barba-Ortega, “Estado de vórtices en un cuadrado superconductor de dos-orbitales con condiciones de contorno mixtas,” Rev. Ingenio, vol. 15, no. 1, pp. 38–43, 2018, doi: https://doi.org/10.22463/2011642X.3118
- N. B. Kopnin, T. T. Heikkilä, G. E. Volovik, “High-temperature surface superconductivity in topological flat-band systems,” Phys. Rev. B, vol. 83, no. 22, p. 220503, 2011, doi: https://doi.org/10.1103/PhysRevB.83.220503
- V. J. Kauppila, F. Aikebaier, T. T. Heikkilä, “Flat-band superconductivity in strained Dirac materials,” Phys. Rev. B, vol. 93, no. 21, p. 214505, 2016, doi: https://doi.org/10.1103/PhysRevB.93.214505
- V. Peri, Z.-D. Song, B. A. Bernevig, S. D. Huber, “Fragile Topology and Flat-Band Superconductivity in the Strong-Coupling Regime,” Phys. Rev. Lett., vol. 126, no. 2, p. 27002, 2021, doi: https://doi.org/10.1103/PhysRevLett.126.027002
- V. I. Iglovikov, F. Hébert, B. Grémaud, G. G. Batrouni, R. T. Scalettar, “Superconducting transitions in flat-band systems,” Phys. Rev. B, vol. 90, no. 9, p. 94506, 2014, doi: https://doi.org/10.1103/PhysRevB.90.094506
- Z. S. Yang, A. M. Ferrenti, R. J. Cava, “Testing whether flat bands in the calculated electronic density of states are good predictors of superconducting materials,” J. Phys. Chem. Solids, vol. 151, p. 109912, 2021, doi: https://doi.org/10.1016/j.jpcs.2020.109912