Vol. 22 No. 3 (2023): Revista UIS Ingenierías
Articles

Critical Design of the FACSAT-2 mission CubeSat for the observation and analysis of the Colombian Territory

Sonia Ruth Rincón-Urbina
Fuerza Aérea Colombiana
Juan Manuel Cárdenas-García
Fuerza Aérea Colombiana
Karen Nicole Pirazán-Villanueva
Fuerza Aérea Colombiana
Ignacio Francisco Acero-Niño
Universidad Sergio Arboleda
Ronald Hernán Hurtado-Velasco
Universidad Sergio Arboleda
Ernesto David Cortés-García
Fuerza Aérea Colombiana

Published 2023-07-22

Keywords

  • FACSAT-2,
  • CubeSat,
  • critical design,
  • spacecraft subsystem,
  • space architecture,
  • MultiScape,
  • Argus,
  • Earth Observation,
  • space development,
  • Colombia in space
  • ...More
    Less

How to Cite

Rincón-Urbina, S. R. ., Cárdenas-García , J. M. ., Pirazán-Villanueva , K. N. ., Acero-Niño , I. F. ., Hurtado-Velasco , R. H. ., & Cortés-García , E. D. (2023). Critical Design of the FACSAT-2 mission CubeSat for the observation and analysis of the Colombian Territory. Revista UIS Ingenierías, 22(3), 69–86. https://doi.org/10.18273/revuin.v22n3-2023006

Abstract

The article presents the critical design of the CubeSat for the FACSAT-2 (SAT-CHIRIBIQUETE) space mission for the georeferenced observation and analysis of the Colombian territory for environmental protection purposes. The satellite provides, through two payloads, data as electro-optical multispectral images (resolution between 4.75 m and 5 m) and, in parallel, data using a spectrometer in the short-wave infrared spectral range of 1000-1700 nm for monitoring greenhouse gases. Based on high-level technical requirements and the operational concept, the input identification and definition of the architecture of the space, ground, and launch segments were performed, defining a six-unit satellite, a ground segment with an S/X-band antenna in the city of Cali, and the use of an EXOpod with launcher-associated characteristics. The subsystems of the mechanical structure, electrical power system, data and command handling system, on-board communication system, and attitude control and determination system were defined and characterized in detail, in accordance with the ECSS standards of the European Space Agency. The initial design solution was customized based on spaces, operational and technical requirements, and the financial budget available for the space mission. It is noteworthy that the article contains exclusive contributions from Colombia, including the definition of the S/X-Band antenna, encryption software, and the design and implementation of the physical interface board to achieve electronic compatibility between the satellite bus and the Argus 2000 spectrometer.

Downloads

Download data is not yet available.

References

  1. G. Corredor, E. Benavides, “Transferencia de tecnología y desarrollo de capacidades para el programa espacial colombiano mediante pequeños satelites,” TecnoEsufa, vol. 29, pp. 8–19, 2019.
  2. J. M. Cárdenas, M. Castaño, “FACSAT II y FACSAT III programa de desarrollo espacial,” Fuerza Aérea Colombiana Revista Aeronáutica, vol.306, pp. 11–13, 2022.
  3. J. Wertz, D. Everett, J. Puschell, “Space Mission Engineering,” in Space Mission Engineering: The New SMAD, 2nd ed., Hawthorne, Ca, USA: Microcosm Press, 2011, pp. 45–49.
  4. J. Willis, P. Walton, D. Wilde, D. Long, “Miniaturized Solutions for CubeSat Servicing and Safety Requirements,” IEEE Journal on Miniaturization for Air and Space Systems, vol. 1, no. 1, pp. 3–9, 2019, doi: https://doi.org/10.1109/tgrs.2019.2954807
  5. S. Wertz, D. Everett, J. Puschell, “Mission Concept Definition and Exploration,” in Space Mission Engineering: The New SMAD, 2nd ed., Hawthorne, Ca, USA: Microcosm Press, 2011, pp. 61–66.
  6. D. Buede, W. Miller, “Introduction, Overview and Basic Knowledge,” in The Engineering Design of Systems: Models and Methods, 3rd ed., Hoboken, NJ, USA: Wiley, 2016, pp. 3–36.
  7. “Small Spacecraft Technology State of the Art,” NASA, Santa Clara, CA, USA, Rep. NASA/TP—20210021263, Oct. 2022. [Online]. Available: https://www.nasa.gov/sites/default/files/atoms/files/2022_soa_full_0.pdf
  8. European Space Agency ESA, “Life Cycle Assessment,” 2013. [Online]. Available: https://www.esa.int/esearch?q=LIFE+CYCLE
  9. P. W. Fortescue, J. P. W. Stark, G. Swinerd, Spacecraft systems engineering. 4th ed. Chichester, SXW, UK: Wiley, 2011.
  10. D. Buede, W. Mille, “Overview of the System Engineering Design Process,” in The Engineering Design of Systems: Models and Methods, 3rd ed., Hoboken, NJ, USA: Wiley, 2016, pp. 46–67.
  11. ThothX, Pembroke, ON., Canada. Argus 2000 IR Spectrometer Owner’s Manual, 2018. [Online]. Available: http://thothx.com/getmedia/4c0d3242-b4fb-4e9d-abf7-85dbb5c6653f/20180815-Argus-2K-Owner-s-Manual,-Thoth-Technology,-rel-1-03.aspx
  12. A.H. Jallad, P. Marpu, Z. Aziz, A. al Marar, M. Awad, “MeznSat—A 3U CubeSat for Monitoring Greenhouse Gases Using ShortWave Infra-Red Spectrometry: Mission Concept and Analysis,” Aerospace, vol. 6, no. 11, p. 118, 2019, doi: https://doi.org/10.3390/aerospace6110118
  13. M. Cho, “CubeSat assembly, integration, testing and verification,” in Cubesat handbook: from mission design to operations, 4th ed., vol. 4, Nottingham, Northd, UK: Elsevier, 2020, pp. 319–338, doi: https://doi.org/10.1016/C2018-0-02366-X
  14. J. Delgado, “Determinación de una órbita comercial operacional para la misión satelital de observación de la tierra FACSAT-2,” M.S. thesis, Dept. Mech. Eng., Univ. Valle, Cali, Colombia, 2021.
  15. Space Debris Mitigation Compliance Verification Guidelines (ESSB-HB-U-002-19), issue 1, European Cooperation for Space Standardization, Noordwijk, Netherlands, 2015.
  16. ESA, Darmstadt, Germany. Debris risk assessment and mitigation analysis (DRAMA) software user manual, 2022.
  17. CubeSat Space Protocol (CSP) GS-CSP-1, GOMspace, 2011. [Online]. Available: https://github.com/GOMspace/libcsp/
  18. SpaceX, Hawthorne, CA, USA. Rideshare Payload User’s Guide, 2021. [Online]. Available: https://www.spacex.com/media/falcon-users-guide-2021-09.pdf
  19. M. Alessandro, C. Coelho, F. Deconick, I. Babkina, N. Longepe, M. Pastena, “NanoSat MO Framework: Onboard AI Apps for Earth Observation,” 35th Annual Small Satellite Conf., 6-11, 2021, Paper SSC21-S1-31.
  20. J. Vos, E. Grobbelaar, Simera Sense MultiScape100 CIS Datasheet., 2021.
  21. K. Sarda, C. Grant, S. Eagleson, D. D. Kekez, R. E. Zee, “Canadian advanced nanospace experiment 2: on-orbit experiences with a three-kilogram satellite,” 22nd annual AIAA/USU Conf. on Small Satellites, 11-14, 2007.
  22. R. K. Jagpal, “Calibration and Validation Argus 1000 Spectrometer - A Canadian Pollution Monitor,” Ph.D. dissertation, Dep. Physics and astronomy. York University, Toronto, ON., Canada, 2011.
  23. M. H. bin Azami, N. C. Orger, V. H. Schulz, T. Oshiro, M. Cho, “Earth Observation Mission of a 6U CubeSat with a 5-Meter Resolution for Wildfire Image Classification Using Convolution Neural Network Approach,” Remote Sensing, vol. 14, no. 8, p. 1874, 2022, doi: https://doi.org/10.3390/rs14081874
  24. V. Carrara, R. B. Januzi, D. H. Makita, L. F. D. P. Santos, L. S. Sato, “The ITASAT cubesat development and design,” JATM, vol. 9, no. 2, pp. 138–147, 2017, doi: https://doi.org/10.5028/jatm.v9i2.614
  25. GOMspace, Aalborg, Denmark. NanoStructure 6U Datasheet Denmark., 2018.
  26. Space Engineering: Structural Factors of Safety for Spaceflight Hardware, ECSS-S-ST-32-10C Rev. 2, European Cooperation for Space Standardization, Noordwijk, Netherlands, May. 2019. [Online]. Available: https://ecss.nl/standard/ecss-e-st-32-10c-rev-2-structural-factors-of-safety-for-spaceflight-hardware-15-may-2019/
  27. Space Engineering: Thermal control general requirements, ECSS-E-ST-31C Rev.1, European Cooperation for Space Standardization, Noordwijk, Netherlands, Nov. 2008, [Online]. Available: http://ecss.nl/standard/ecss-e-st-31c-thermal-control/
  28. Space engineering: Testing, ECSS-E-ST-10-03C, European Cooperation for Space Standardization, Noordwijk, Netherlands, 2012. [Online]. Available: https://ecss.nl/standard/ecss-e-st-10-03c-rev-1-testing-31-may-2022/
  29. Margin philosophy for science assessment studies, European Cooperation for Space Standardization, Noordwijk, Netherlands, 2012.
  30. GOMspace, Aalborg, Denmark. NanoPower Battery 2600mAh Datasheet Lithium Ion 18650 cells for space flight products, 2019.
  31. GOMspace, Aalborg, Denmark. NanoPower BPX Datasheet High-capacity battery pack for nano-satellites, 2021.
  32. V. Babuska, D. M. Coombs, J. C. Goodding, E. v Ardelean, L. M. Robertson, S. A. Lane, “Modeling and Experimental Validation of Space Structures with Wiring Harnesses,” Space Rockets, vol. 47, no. 6, pp. 1038–1052, 2012, doi: https://doi.org/10.2514/1.48078
  33. J. Yang et al., “State-of-health estimation for satellite batteries based on the actual operating parameters – Health indicator extraction from the discharge curves and state estimation,” Energy Storage, vol. 31, p. 101490, 2020, doi: https://doi.org/10.1016/j.est.2020.101490
  34. GOMspace, Aalborg, Denmark. NanoMind A3200 Datasheet On-board Computer System for mission-critical space application, 2019.
  35. F. Landis Markley, J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control. 1st ed., NY, USA: Springer, 2014, doi: https://doi.org/10.1007/978-1-4939-0802-8
  36. Space engineering: Pointing error handbook (ESSB-HB-E-003), Issue 1, European Cooperation for Space Standardization, Noordwijk, Netherlands, 2011.