Published 2023-09-12
Keywords
- Seismic data regularization,
- deep learning,
- unsupervised learning,
- shot-gather reconstruction,
- deep image prior
- seismic processing,
- subsampled survey,
- convolutional network,
- seismic acquisition,
- data interpolation ...More
How to Cite
Copyright (c) 2023 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Seismic surveys are often affected by environmental obstacles or restrictions that prevent regular sampling in seismic acquisition. To address missing data, various methods, including deep learning techniques, have been developed to extract features from complex information, albeit with the limitation of requiring external seismic databases. While previous works have primarily focused on trace reconstruction, missing shot-gathers directly impact the seismic processing flow and represent a major challenge in seismic data regularization. In this paper, we propose DIPsgr, a seismic shot-gather reconstruction method that uses only the incomplete seismic acquisition measurements to estimate their missing information employing unsupervised deep learning. Numerical experiments on three databases demonstrate that DIPsgr recovers the complete set of traces in each shot-gather, with preserved information and seismic events.
Downloads
References
- L. Hatton, M. H. Worthington, J. Makin, “Seismic data processing: theory and practice,” Merlin Profiles Ltd., Tech. Rep., 1986.
- N. Cooper, L. A. Briceño, L. Alfredo, M. Vides, Manual para la adquisición y procesamiento de sísmica terrestre y su aplicación en Colombia. Colombia: Universidad Nacional de Colombia, 2010. [Online]. Available: https://www.anh.gov.co/documents/34/Manual_Tecnicas_Sismica_Terrestre.pdf
- C. L. Liner, Elements of 3D seismology. Society of Exploration Geophysicists, 2016.
- X. Wang, S. Yu, “Seismic Data Regularization on Nonequispaced Grid via a Joint Sparsity-Promotion Method,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022, doi: https://doi.org/10.1109/LGRS.2021.3072356
- W. Liu, S. Cao, G. Li, Y. He, “Reconstruction of seismic data with missing traces based on local random sampling and curvelet transform,” J. Appl. Geophys., vol. 115, pp. 129–139, 2015, doi: https://doi.org/10.1016/j.jappgeo.2015.02.009
- P. Yang, J. Gao, W. Chen, “Curvelet-based POCS interpolation of nonuniformly sampled seismic records,” J. Appl. Geophys., vol. 79, pp. 90–99, 2012, doi: https://doi.org/10.1016/j.jappgeo.2011.12.004
- F. Kong, F. Picetti, V. Lipari, P. Bestagini, X. Tang, S. Tubaro, “Deep Prior-Based Unsupervised Reconstruction of Irregularly Sampled Seismic Data,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi: https://doi.org/10.1109/LGRS.2020.3044455
- Q. Liu, L. Fu, M. Zhang, “Deep-seismic-prior-based reconstruction of seismic data using convolutional neural networks,” Geophysics, vol. 86, no. 2, pp. V131–V142, Mar. 2021, doi: https://doi.org/10.1190/geo2019-0570.1
- N. Kazemi, E. Bongajum, M. D. Sacchi, “Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3200–3207, 2016, doi: https://doi.org/10.1109/TGRS.2015.2513417
- O. Villarreal, K. León-López, D. Espinosa, W. Agudelo, H. Arguello, “Seismic source reconstruction in an orthogonal geometry based on local and non-local information in the time slice domain,” J. Appl. Geophys., vol. 170, p. 103846, 2019, doi: https://doi.org/10.1016/j.jappgeo.2019.103846
- K. L. Lopez, J. M. Ramirez, W. Agudelo, H. Arguello Fuentes, “Regular Multi-Shot Subsampling and Reconstruction on 3D Orthogonal Symmetric Seismic Grids via Compressive Sensing,” in 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 2019, pp. 1–5. doi: https://doi.org/10.1109/STSIVA.2019.8730279
- X. Chai, G. Tang, S. Wang, K. Lin, and R. Peng, “Deep Learning for Irregularly and Regularly Missing 3-D Data Reconstruction,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 7, pp. 6244–6265, 2021, doi: https://doi.org/10.1109/TGRS.2020.3016343
- S. Mandelli, F. Borra, V. Lipari, P. Bestagini, A. Sarti, S. Tubaro, “Seismic data interpolation through convolutional autoencoder,” in SEG Technical Program Expanded Abstracts 2018, Aug. 2018, no. October, pp. 4101–4105. doi: https://doi.org/10.1190/segam2018-2995428.1
- S. Mandelli, V. Lipari, P. Bestagini, S. Tubaro, “Interpolation and Denoising of Seismic Data using Convolutional Neural Networks,” arXiv.org, pp. 1–17, Jan. 2019, doi: https://doi.org/10.48550/arXiv.1901.07927
- D. Kuijpers, I. Vasconcelos, and P. Putzky, “Reconstructing missing seismic data using Deep Learning,” arXiv.org, Jan. 2021, doi: https://doi.org/10.48550/arXiv.2101.09554
- J. D. Kelleher, “Deep learning,” Mit Press Essential Knowledge Series, vol. 1, 2019.
- D. Ulyanov, A. Vedaldi, V. Lempitsky, “Deep Image Prior,” Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9446 – 9454, doi: https://doi.org/10.1109/CVPR.2018.00984
- B. Wang, W. Lu, “Accurate and efficient seismic data interpolation in the principal frequency wavenumber domain,” J. Geophys. Eng., vol. 14, no. 6, pp. 1475–1483, 2017, doi: https://doi.org/10.1088/1742-2140/aa82dc
- W. Xiongwen, W. Huazhong, Z. Xiaopeng, “High dimensional seismic data interpolation with weighted matching pursuit based on compressed sensing,” J. Geophys. Eng., vol. 11, no. 6, p. 065003, 2014, doi: https://doi.org/10.1088/1742-2132/11/6/065003
- Q. Wang, Y. Shen, L. Fu, H. Li, “Seismic data interpolation using deep internal learning,” Exploration Geophysics, vol. 51, no. 6, pp. 683–697, 2020, doi: https://doi.org/10.1080/08123985.2020.1748496
- P. Goyes-Penafiel, E. Vargas, C. V. Correa, W. Agudelo, B. Wohlberg, H. Arguello, “A Consensus Equilibrium Approach for 3-D Land Seismic Shots Recovery,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi: https://doi.org/10.1109/LGRS.2021.3082421
- F. Luporini et al., “Architecture and Performance of Devito, a System for Automated Stencil Computation,” ACM Trans. Math. Softw., vol. 46, no. 1, pp. 1–28, 2020, doi: https://doi.org/10.1145/3374916
- R. Versteeg, “The Marmousi experience: Velocity model determination on a synthetic complex data set,” Lead. Edge, vol. 13, no. 9, pp. 927–936, 1994, doi: https://doi.org/10.1190/1.1437051
- Robert G. Keys and Douglas J. Foster, “Mobil AVO viking graben line 12,” 2023. [Online]. Available: https://wiki.seg.org/wiki/Mobil_AVO_viking_graben_line_12
- G. B. Madiba, G. A. McMechan, “Processing, inversion, and interpretation of a 2D seismic data set from the North Viking Graben, North Sea,” Geophysics, vol. 68, no. 3, pp. 837–848, May 2003, doi: https://doi.org/10.1190/1.1581036
- P. Goyes-Peñafiel et al., “Coordinate-Based Seismic Interpolation in Irregular Land Survey: A Deep Internal Learning Approach,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–12, 2023, doi: https://doi.org/10.1109/TGRS.2023.3290468
- D. P. Kingma, J. Ba, “Adam: A Method for stochastic optimization,” arXiv preprint arXiv:1412.6980, pp. arXiv–1412, 2017. [Online]. Available: https://arxiv.org/abs/1412.6980