Published 2024-06-03
Keywords
- Risk Management,
- Natural Flood Management,
- River Restoration,
- Hydraulic and Hydrological Modeling,
- Iber
- distributed hydrological model ...More
How to Cite
Copyright (c) 2024 Revista UIS Ingenierías

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
This research evaluates natural flood management strategies in a mountain basin, the Olivares-Minitas creek in Manizales, Colombia, to quantify the effectiveness of their application in reducing floods. Hydraulic and hydrological modeling was performed simultaneously in Iber software. Multiple scenarios were proposed for three natural flood management alternatives: (1) making room for the channel, eliminating contractions and structures limitations, (2) changing the vegetation cover of the upper part of the basin, increasing the ground roughness, and (3) reconnect the stream with their floodplains, allowing the stream to dissipate flow and energy. Applying these strategies, the simulations resulted of the decrease the high discharges and the delay in peak times for the hydrographs. In conclusion, from natural solutions like rehabilitating, recovering the water body, and their ecosystem, is possible to manage and reduce the flooding risk, Attaining benefits through long-term reduction of flooding and enhancement of the river and its ecosystem.
Downloads
References
- Ministerio de Ambiente, Estudio Nacional del Agua 2018. 2019.
- O. Iacob, J. S. Rowan, I. Brown, C. Ellis, “Evaluating wider benefits of natural flood management strategies: an ecosystem-based adaptation perspective,” pp. 774–787, 2014, doi: https://doi.org/10.2166/nh.2014.184
- A. Kumar, “The rights of rivers,” Our Planet, vol. 2017, no. 2, pp. 40–41, 2018, doi: https://doi.org/10.18356/107E0E5A-EN
- T. Wingfield, N. Macdonald, K. Peters, J. Spees, K. Potter, “Natural Flood Management: Beyond the evidence debate,” Area, vol. 51, no. 4, pp. 743–751, 2019, doi: https://doi.org/10.1111/area.12535
- European Enviroment Agency, “Nature-based solutions in Europe: Policy, knowledge and practice for climate change adaptation and disaster risk reduction,” 2021, doi: https://doi.org/10.2800/919315
- S. Han, C. Kuhlicke, “Barriers and Drivers for Mainstreaming Nature-Based Solutions for Flood Risks: The Case of South Korea,” International Journal of Disaster Risk Science, vol. 12, no. 5, pp. 661–672, 2021, doi: https://doi.org/10.1007/s13753-021-00372-4
- C. Short, L. Clarke, F. Carnelli, C. Uttley, B. Smith, “Capturing the multiple benefits associated with nature-based solutions: Lessons from a natural flood management project in the Cotswolds, UK,” Land Degrad Dev, vol. 30, no. 3, pp. 241–252, 2019, doi: https://doi.org/10.1002/ldr.3205
- F. Turkelboom, R. Demeyer, L. Vranken, P. De Becker, F. Raymaekers, L. De Smet, “How does a nature-based solution for flood control compare to a technical solution? Case study evidence from Belgium,” Ambio, vol. 50, no. 8, pp. 1431–1445, 2021, doi: https://doi.org/10.1007/s13280-021-01548-4
- M. Sanz-Ramos et al., “Iber v3. Manual de referencia e interfaz de usuario de las nuevas implementaciones,” 2022. [Online]. Available: https://www.scipedia.com/public/Sanz-Ramos_et_al_2022b
- C. A. Caro Camargo, “Modelación hidrológica distribuida basada en esquemas de volúmenes finitos,” tesis doctoral, Universitat Politècnica de Catalunya, 2015.
- F. Andrés and Y. Amaya, “Estudio hidráulico del meandro del río Magdalena, municipio de La Dorada Caldas,” trabajo fin de master, Universidad Nacional de Colombia, 2019.
- United States Department of Agriculture, “Estimation of Runoff by using SCS Curve Number Method and Arc GIS,” Int J Sci Eng Res, vol. 5, no. 7, 2014.
- United States Department of Agriculture, “Chapter 10 Estimation of Direct Runoff from Storm Rainfall,” Jul. 2004.
- Á. Diaz Carvajal, T. Mercado Fernández, “Obstacle detection system with Scanner,” Ingeniería y Desarrollo, vol. 32, no. 2, pp. 200–217, 2014, doi: https://doi.org/10.14482/inde.32.2.5406
- United States Department of Agriculture, “Hydrologic Soil-Cover Complexes Rain clouds Cloud formation,” Jul. 2004.
- M. G. Osío Yépez, E. G. Valencia Ventura, H. Cartaya, “Cálculo del coeficiente de rugosidad ‘n’ de Manning en los grandes ríos de Venezuela,” Ingeniería UC, vol. 7, 2000.
- Ministerio de Medio Ambiente, “Guía Metodológica para el desarrollo del Sistema Nacional de Cartografía de Zonas Inundables,” Gobierno de España, 2011.
- I. D. E. A. – IDEA, “Operación y mantenimiento preventivo y correctivo a las redes hidrometeorológicas, de calidad del aire y sísmica en el departamento de Caldas.,” Manizales, Caldas, 2019.
- IGAC, “Datos Abiertos Agrología GEOPORTAL,” 2019. [Online]. Available: https://geoportal.igac.gov.co/contenido/datos-abiertos-agrologia
- CORPOCALDAS, “Plan de manejo. Reserva forestal protectora de las cuencas hidrográficas de Río Blanco y quebrada Olivares,” p. 145, 2010.
- IDEAM, “9. clasificación de los climas,” 2013.
- F. M. Fernández, “Apuntes Sobre el Clima en Manizales,” 2008.
- H. González, “Memoria explicativa-Geología de las planchas 206 Manizales y 225 nevado del Ruíz.,” Manizales, 2001.
- CORPOCALDAS, “Uso Cobertura Suelo Cuenca Chinciná,” 2018. [Online]. Available: http://190.0.61.202:8085/#/viewer?id=118
- C. Mbow, A. Diop, A. T. Diaw, C. I. Niang, “Urban sprawl development and flooding at Yeumbeul suburb (Dakar-Senegal),” Afr J Environ Sci Tech, vol. 2, no. 4, pp. 75–088, 2008, [Online]. Available: http://www.academicjournals.org/AJest
- A. Mustafa et al., “Effects of spatial planning on future flood risks in urban environments,” J Environ Manage, vol. 225, pp. 193–204, 2018, doi: https://doi.org/10.1016/j.jenvman.2018.07.090
- E. Zúñiga, V. Magaña, and V. Piña, “Effect of urban development in risk of floods in Veracruz, Mexico,” Geosciences, vol. 10, no. 10, pp. 1–14, Oct. 2020, doi: https://doi.org/10.3390/geosciences10100402
- D. M. Rey Valencia, J. D. C. Zambrano Nájera, “Estudio de la respuesta hidrológica en la cuenca urbana de montaña San Luis-Palogrande,” Revista UIS Ingenierías, vol. 17, no. 1, pp. 115–126, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018011
- J. R. Rojas Gallejo, M. A. Tobar Valencia, “Inventario de obras de infraestructura en la quebrada Olivares-Minitas,” trabajo de grado, Universidad Católica de Manizales, 2012.
- F. Magdaleno, F. Cortés, J. M. Bodoque, “El proyecto DRAINAGE: restaurando las llanuras de inundación como infraestructuras verdes frente a los riesgos de inundación,” 2019. [Online]. Available: https://www.researchgate.net/publication/334279289
- Google Earth, “Imagen satelital.” 2022. [Online]. Available: https://earth.google.com/web/search/Manizales,+Caldas/@5.0686975,-75.483643,2135.33763762a,18524.88471708d,35y,0h,0t,0r/data=CnwaUhJMCiUweDhlNDc2ZmZhNmE0MmNlM2I6MHhhODYzY2Y2NDIzZWExNDFjGTf0u1V8QBRAIacaYmEt4FLAKhFNYW5pemFsZXMsIENhbGRhcxgCIAEiJgokCTF_aa7Q8zJAETF_aa7Q8zLAGV8DWLnBJD5AIS3wt373Y1HAOgMKATA
- M. Castro D, X. Hidalgo B, R. Poveda F, “Sobre la modelación hidráulica en obras de saneamiento básico,” trabajo fin de grado, Universidad Nacional de Chimborazo, 2003.
- Earth Observing System, “Visor de tierras | EOS,” 2022. [Online]. Available: https://eos.com/landviewer/?s=Sentinel2
- NASA, “Río Blanco, Colombia - Satellite Images on EOSDA LandViewer.” 2020. [Online]. Available: https://eos.com/landviewer/?lat=5.07902&lng=-75.37912&z=12
- United States Department of Agriculture, National Engineering Handbook, 2009.
- J. Zambrano Nájera, J. J. Vélez Upegui, “Drenaje Urbano en Colombia.” Editorial Universidad Nacional de Colombia, Colombia, 2023.
- Universidad Nacional de Colombia and CORPOCALDAS, “Datos e Indicadores Ambientales de Caldas,” https://cdiac.manizales.unal.edu.co/indicadores/public/DurationCurve
- E. C. Albuja Silva, D. O. Tenelanda Patiño, “Desarrollo de un modelo conceptual de lluvia-escorrentía para interpretación de procesos hidrológicos en la cuenca altoandina del río Zhurucay.,” proyecto fin de grado, Universidad de Cuenca, Ecuador, 2014.