Vol. 23 No. 1 (2024): Revista UIS Ingenierías
Articles

Carbon nanotubes grown by plasma enhanced chemical vapor deposition of acetylene in the presence of water vapor

Júlia Sancho-Tapia
Universidad de Barcelona
Enric Bertran-Sierra
Universidad de Barcelona
Rogelio Ospina
Universidad Industrial de Santander

Published 2024-02-11

Keywords

  • carbon nanotubes,
  • plasma-enhanced chemical vapor deposition,
  • water-assisted PECVD

How to Cite

Sancho-Tapia, J., Bertran-Sierra, E. ., & Ospina, R. . (2024). Carbon nanotubes grown by plasma enhanced chemical vapor deposition of acetylene in the presence of water vapor. Revista UIS Ingenierías, 23(1), 39–46. https://doi.org/10.18273/revuin.v23n1-2024004

Abstract

Carbon nanotubes can be synthesized using various techniques. This work aims to study the experimental process of growing carbon nanotubes via plasma-enhanced chemical vapor deposition (PECVD). Additionally, the study aims to calibrate the reactor and develop a LabVIEW code to introduce water into the process, enabling a water-assisted PECVD procedure. The obtained samples are evaluated through the analysis of SEM images and Raman spectra.

Downloads

Download data is not yet available.

References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, no. 354, pp. 56–58, 1991, doi: https://doi.org/10.1038/354056a0
  2. MF Yu, O Lourie, MJ Dyer, K Moloni, TF Kelly, RS Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, no. 287 pp.637–640, 2000, doi: https://doi.org/10.1126/science.287.5453.637
  3. R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S. Newaz Kazi, E. Sadeghinezhad, N. Zubir, “An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes,” Nanoscale Research Letters, vol. 91, 2014, doi: https://doi.org/10.1186/1556-276X-9-151
  4. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386 pp. 474–477, 1997 doi: https://doi.org/10.1038/386474a0
  5. I. Alshaik, E. Bertran, R. Amade, “Synthesis and Characterization of Carbon nanotubes and Hybrid carbon Nanostructures grown on flexible electrodes for Supercapacitor Applications”, Doctoral dissertation, University of Barcelona, Barcelona, 2021. http://hdl.handle.net/10803/674294
  6. Y. Ando, X. Zhao, T.i Sugai, M. Kumar, “Growing carbon nanotubes,” Materials Today, vol. 7, no. 10, pp. 22-29, 2004, doi: https://doi.org/10.1016/S1369-7021(04)00446-8
  7. M. V. Singh, A. Kumar Tiwari, R. Gupta, “Catalytic Chemical Vapor Deposition Methodology for Carbon Nanotubes Synthesis” Chemistry Select, vol. 8, 2023, doi: https://doi.org/10.1002/slct.202204715
  8. T.W. Ebbesen, P.M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 1992. https://doi.org/10.1038/358220a
  9. A. Matyushov “Growth of Carbon Nanotubes Via Chemical Vapor Deposition”, NSF Summer Undergraduate Fellowship in Sensor Technologies.
  10. S. Hussain, R. Amade, E. Jover, E. Bertran, “Funcionalization of carbon nanotubes by water plasma”, Nanotechnology, vol. 23, 2012, doi: https://doi.org/10.1088/0957-4484/23/38/385604
  11. F. Pantoja-Suárez, “Carbon nanotubes grown on stainless steel for supercapacitor applications”, Doctoral dissertation, University of Barcelona, Barcelona, 2019. https://diposit.ub.edu/dspace/handle/2445/142730
  12. C. Bonafos, L. Khomenkhova, F. Gourbilleau, E. Talbot, A. Slaoui, M. Carrada, S. Schamm-Chardon, P. Dimitrakis, P. Normand,” Chapter 7 - Nano-composite MOx materials for NVMs”, Metal Oxides for Non-volatile Memory. Elsevier, 2022, doi: https://doi.org/10.1016/B978-0-12-814629-3.00007-6
  13. J. Philippe Tessonnier, D. Sheng Su, “Recent Progress on the Growth Mechanism of carbon nanotubes: A Review,” ChemSusChem, vol. 4, no. 7, pp. 824-827, 2011, doi: https://doi.org/10.1002/cssc.201100175
  14. R. Purohit, K. Purohit, S. Rana, R.S. Rana, V. Patel, “Carbon Nanotubes and Their Growth Methods”, Procedia Materials Science, vol. 6, Pp. 716-728, 2014, doi: https://doi.org/10.1016/j.mspro.2014.07.088
  15. A. Venkataraman, E. V. Amadi, Y. Chen, et al. “Carbon Nanotube Assembly and Integration for Applications,” Nanoscale Res Lett, vol. 14, 2019, doi: https://doi.org/10.1186/s11671-019-3046-3
  16. S. Hussain, R. Amade, E. Bertran, “Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications,” Materials Chemistry and Physics, vol. 148, no. 3, pp. 914-922, 2014, doi: https://doi.org/10.1016/j.matchemphys.2014.08.070
  17. J. Schäfer, K. Fricke, F. Mika, Z. Pokorná, L. Zajíčková, R. Foest, “Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure,” Thin Solid Films, vol. 630, pp. 71-78, 2017, doi: https://doi.org/10.1016/j.tsf.2016.09.022
  18. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. Kalenczuk, “Characterization of carbon nanotubes by Raman spectroscopy,” Materials Science- Poland, vol. 26, no. 2, pp. 433-440, 2008.
  19. A. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, pp. 47-57, 2007, doi: https://doi.org/10.1016/j.ssc.2007.03.052