Articles
Carbon nanotubes grown by plasma enhanced chemical vapor deposition of acetylene in the presence of water vapor
Published 2024-02-11
Keywords
- carbon nanotubes,
- plasma-enhanced chemical vapor deposition,
- water-assisted PECVD
How to Cite
Sancho-Tapia, J., Bertran-Sierra, E. ., & Ospina, R. . (2024). Carbon nanotubes grown by plasma enhanced chemical vapor deposition of acetylene in the presence of water vapor. Revista UIS Ingenierías, 23(1), 39–46. https://doi.org/10.18273/revuin.v23n1-2024004
Copyright (c) 2024 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Carbon nanotubes can be synthesized using various techniques. This work aims to study the experimental process of growing carbon nanotubes via plasma-enhanced chemical vapor deposition (PECVD). Additionally, the study aims to calibrate the reactor and develop a LabVIEW code to introduce water into the process, enabling a water-assisted PECVD procedure. The obtained samples are evaluated through the analysis of SEM images and Raman spectra.
Downloads
Download data is not yet available.
References
- S. Iijima, “Helical microtubules of graphitic carbon,” Nature, no. 354, pp. 56–58, 1991, doi: https://doi.org/10.1038/354056a0
- MF Yu, O Lourie, MJ Dyer, K Moloni, TF Kelly, RS Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, no. 287 pp.637–640, 2000, doi: https://doi.org/10.1126/science.287.5453.637
- R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S. Newaz Kazi, E. Sadeghinezhad, N. Zubir, “An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes,” Nanoscale Research Letters, vol. 91, 2014, doi: https://doi.org/10.1186/1556-276X-9-151
- S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386 pp. 474–477, 1997 doi: https://doi.org/10.1038/386474a0
- I. Alshaik, E. Bertran, R. Amade, “Synthesis and Characterization of Carbon nanotubes and Hybrid carbon Nanostructures grown on flexible electrodes for Supercapacitor Applications”, Doctoral dissertation, University of Barcelona, Barcelona, 2021. http://hdl.handle.net/10803/674294
- Y. Ando, X. Zhao, T.i Sugai, M. Kumar, “Growing carbon nanotubes,” Materials Today, vol. 7, no. 10, pp. 22-29, 2004, doi: https://doi.org/10.1016/S1369-7021(04)00446-8
- M. V. Singh, A. Kumar Tiwari, R. Gupta, “Catalytic Chemical Vapor Deposition Methodology for Carbon Nanotubes Synthesis” Chemistry Select, vol. 8, 2023, doi: https://doi.org/10.1002/slct.202204715
- T.W. Ebbesen, P.M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 1992. https://doi.org/10.1038/358220a
- A. Matyushov “Growth of Carbon Nanotubes Via Chemical Vapor Deposition”, NSF Summer Undergraduate Fellowship in Sensor Technologies.
- S. Hussain, R. Amade, E. Jover, E. Bertran, “Funcionalization of carbon nanotubes by water plasma”, Nanotechnology, vol. 23, 2012, doi: https://doi.org/10.1088/0957-4484/23/38/385604
- F. Pantoja-Suárez, “Carbon nanotubes grown on stainless steel for supercapacitor applications”, Doctoral dissertation, University of Barcelona, Barcelona, 2019. https://diposit.ub.edu/dspace/handle/2445/142730
- C. Bonafos, L. Khomenkhova, F. Gourbilleau, E. Talbot, A. Slaoui, M. Carrada, S. Schamm-Chardon, P. Dimitrakis, P. Normand,” Chapter 7 - Nano-composite MOx materials for NVMs”, Metal Oxides for Non-volatile Memory. Elsevier, 2022, doi: https://doi.org/10.1016/B978-0-12-814629-3.00007-6
- J. Philippe Tessonnier, D. Sheng Su, “Recent Progress on the Growth Mechanism of carbon nanotubes: A Review,” ChemSusChem, vol. 4, no. 7, pp. 824-827, 2011, doi: https://doi.org/10.1002/cssc.201100175
- R. Purohit, K. Purohit, S. Rana, R.S. Rana, V. Patel, “Carbon Nanotubes and Their Growth Methods”, Procedia Materials Science, vol. 6, Pp. 716-728, 2014, doi: https://doi.org/10.1016/j.mspro.2014.07.088
- A. Venkataraman, E. V. Amadi, Y. Chen, et al. “Carbon Nanotube Assembly and Integration for Applications,” Nanoscale Res Lett, vol. 14, 2019, doi: https://doi.org/10.1186/s11671-019-3046-3
- S. Hussain, R. Amade, E. Bertran, “Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications,” Materials Chemistry and Physics, vol. 148, no. 3, pp. 914-922, 2014, doi: https://doi.org/10.1016/j.matchemphys.2014.08.070
- J. Schäfer, K. Fricke, F. Mika, Z. Pokorná, L. Zajíčková, R. Foest, “Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure,” Thin Solid Films, vol. 630, pp. 71-78, 2017, doi: https://doi.org/10.1016/j.tsf.2016.09.022
- S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. Kalenczuk, “Characterization of carbon nanotubes by Raman spectroscopy,” Materials Science- Poland, vol. 26, no. 2, pp. 433-440, 2008.
- A. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, pp. 47-57, 2007, doi: https://doi.org/10.1016/j.ssc.2007.03.052