Vol. 22 No. 4 (2023): Revista UIS Ingenierías
Articles

Risk assessment and corrosion level due to inductions on pipelines close to AC power lines

Johnatan M. Rodríguez-Serna
Universidad de Antioquia
Walter M. Villa-Acevedo
Universidad de Antioquia

Published 2023-11-06

Keywords

  • risk assessment,
  • induction in pipelines,
  • personnel safety,
  • corrosion hazard

How to Cite

Rodríguez-Serna, J. M., & Villa-Acevedo , W. M. . (2023). Risk assessment and corrosion level due to inductions on pipelines close to AC power lines. Revista UIS Ingenierías, 22(4), 61–70. https://doi.org/10.18273/revuin.v22n4-2023006

Abstract

A better use of space is achieved when different networks and systems, such as AC transmission lines, transportation systems, and pipelines share the same right-of-way. However, the electromagnetic coupling between the systems may cause the appearance of dangerous conditions for people due to exposure to high touch voltages, as well as for pipelines, caused by the activation of the AC corrosion phenomenon. These dangerous conditions require that during design the possible risks are assessed, and the corresponding mitigation actions are determined. This paper presents a simplified methodology for risk assessment using a practical approach and analytical expressions that can be easily implemented from information known while designing. Likewise, results are included for a case study that allow validating the proposed methodology and demonstrating the importance of this type of analysis.

Downloads

Download data is not yet available.

References

  1. R. J. Lings, EPRI AC transmission line reference book: 200 kV and above, third edition, 3rd ed. Palo Alto, Calif.: Electric Power Research Institute, 2005.
  2. Nace International, NACE SP0177-2014. Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems. Houston, TX, USA, 2014.
  3. International Electrotechnical Commission-IEC, “IEC 60479-1:2018 Effects of current on human beings and livestock General aspects”. IEC, Geneva, Switzerland, 2018. [Online]. Available: https://webstore.iec.ch/publication/62980
  4. CIGRE WG 36.02, Guide on the influence of high voltage AC power systems on metallic pipelines. Paris, Fr, 1995. [Online]. Available: https://e-cigre.org/publication/095-guide-on-the-influence-of-high-voltage-ac-power-systems-on-metallic-pipelines
  5. CEOCOR, A.C. Corrosion On Cathodically Protected Pipelines-Guidelines for risk assessment and mitigation measures. 2001. [Online]. Available: https://ceocor.lu/download/AC-Corrosion-Booklet-on-cathodically-protected-pipelines-ed-2001.pdf
  6. ITU, Directives Concerning the Protection of Telecommunication Lines Against Harmful Effects from Electric Power and Electrified Railway Lines. Volume VI, 1989 Edition: Danger and Disturbance, Handbooks on Standardization. Geneva, 2006. [Online]. Available: http://handle.itu.int/11.1002/pub/800dd616-en.
  7. EPRI EL-904, Mutual Design Considerations for Overhead AC Transmission Lines and Gas Transmission Pipelines, Volume 1: Engineering Analysis. Palo Alto, Cal, USA, 1978. Accedido: 15 de junio de 2023. [Online]. Available: https://www.epri.com/research/products/EL-904-V1
  8. L. Bortels, J. Deconinck, C. Munteanu, V. Topa, “A general applicable model for AC predictive and mitigation techniques for pipeline networks influenced by HV power lines”, IEEE Trans. Power Deliv., vol. 21, n.o 1, pp. 210-217, ene. 2006, doi: https://doi.org/10.1109/TPWRD.2005.848754
  9. E. Lunca, S. Vornicu, A. Salceanu, O. Bejenaru, “2D Finite Element Model for computing the electric field strength-rms generated by overhead power lines”, J. Phys. Conf. Ser., vol. 1065, n.o 5, p. 052024, ago. 2018, doi: https://doi.org/10.1088/1742-6596/1065/5/052024
  10. A. Popoli, L. Sandrolini, A. Cristofolini, “Inductive coupling on metallic pipelines: Effects of a nonuniform soil resistivity along a pipeline-power line corridor”, Electr. Power Syst. Res., vol. 189, p. 106621, dic. 2020, doi: https://doi.org/10.1016/j.epsr.2020.106621
  11. H.S. Kim, H. Y. Min, J. G. Chase, C.-H. Kim, “Analysis of Induced Voltage on Pipeline Located Close to Parallel Distribution System”, Energies, vol. 14, no 24, 2021, doi: https://doi.org/10.3390/en14248536
  12. G. M. Amer, “Novel technique to calculate the effect of electromagnetic field of H.V.T.L. on the metallic pipelines by using EMTP program”, en CIRED 2005 - 18th International Conference and Exhibition on Electricity Distribution, 2005, pp. 1-5. doi: https://doi.org/10.1049/cp:20051014
  13. G. S. Subcommittee, “Electromagnetic Effects of Overhead Transmission Lines Practical Problems, Safeguards, and Methods of Calculation”, IEEE Trans. Power Appar. Syst., vol. PAS-93, n.o 3, pp. 892-904, 1974, doi: https://doi.org/10.1109/TPAS.1974.293989
  14. T. A. Papadopoulos, A. K. Apostolidis, A. I. Chrysochos, G. C. Christoforidis, “Frequency-Dependent Earth Impedance Formulas Between Overhead Conductors and Underground Pipelines”, en 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2019, pp. 1-6. doi: https://doi.org/10.1109/EEEIC.2019.8783576
  15. D. A. Tsiamitros, G. C. Christoforidis, G. K. Papagiannis, D. P. Labridis, P. S. Dokopoulos, “Earth conduction effects in systems of overhead and underground conductors in multilayered soils”, IEE Proc. - Gener. Transm. Distrib., vol. 153, no. 3, pp. 291-299, 2006, doi: https://doi.org/10.1049/ip-gtd:20050195
  16. F. A. Uribe, “Calculating Mutual Ground Impedances Between Overhead and Buried Cables”, IEEE Trans. Electromagn. Compat., vol. 50, n.o 1, pp. 198-203, 2008, doi: https://doi.org/10.1109/TEMC.2007.915286
  17. Minenergia, Reglamento Técnico de Instalaciones Eléctricas - RETIE. Bogotá, Col, 2013.
  18. British Standards Institution, BS EN 15280 : Evaluation of a.c. corrosion likelihood of buried pipelines applicable to cathodically protected pipelines. London, 2013.
  19. CEN/TS 219, UNE-CEN/TS 15280:2007 IN Evaluación del riesgo de corrosión po... 2006. Accedido: 15 de junio de 2023. [Online]. Available: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?Tipo=N&c=N0038400
  20. M. Ouadah, O. Touhami, R. Ibtiouen, “Diagnosis Of The Ac Current Densities Effect On The Cathodic Protection Performance Of The Steel X70 For A Buried Pipeline Due To Electromagnetic Interference Caused By Hvptl”, Prog. Electromagn. Res. M, vol. 45, pp. 163-171, 2016, doi: https://doi.org/10.2528/PIERM15101103