Vol. 23 No. 3 (2024): Revista UIS Ingenierías
Articles

Evaluation of Mini-Groynes as a Countermeasure for Reducing Local Scour in Longitudinal River Walls with Well-Graded Granular Beds Using Flow-3D and AHP

Ana Fernanda Del Río-Puerta
Universidad Francisco de Paula Santander
Nelson Javier Cely-Calixto
Universidad Francisco de Paula Santander
Melquisedec Cortés- Zambrano
Universidad Santo Tomas

Published 2024-08-11

Keywords

  • AHP,
  • countermeasures,
  • efficiency,
  • flow-3D,
  • granular bed,
  • hierarchy,
  • local scour,
  • longitudinal walls
  • ...More
    Less

How to Cite

Del Río-Puerta , A. F. ., Cely-Calixto , N. J., & Cortés- Zambrano, M. . (2024). Evaluation of Mini-Groynes as a Countermeasure for Reducing Local Scour in Longitudinal River Walls with Well-Graded Granular Beds Using Flow-3D and AHP. Revista UIS Ingenierías, 23(3), 61–70. https://doi.org/10.18273/revuin.v23n3-2024005

Abstract

The objective of the research is to evaluate a countermeasure for the reduction of local scour in longitudinal walls in rivers with well-graded granular beds using the Flow-3D software; The countermeasure is selected using the Analytic Hierarchy Process AHP method and is numerically modeled with slopes of 2.5% and flow rates between 0.008 and 0.03 m3/s. Using the AHP method, it is obtained that the alternative with the highest hierarchy is the mini-breakwaters, for which scenarios of 0.3, 0.45, and 0.6 m in dimension are modeled, and arranged in the direction and counterflow. The simulation in the software showed that the countermeasure of mini-breakwaters of 0.45 m in length arranged in counterflow, presented an efficiency of 75%, compared to those of 0.3 m and 0.6 m whose efficiencies are 60.69 % and 51.12% respectively. The research is a significant contribution to the approach to alternatives for protecting longitudinal walls.

Downloads

Download data is not yet available.

References

  1. G. Yan et al., “Recognition of Fluvial Bank Erosion Along the Main Stream of the Yangtze River,” Engineering, vol. 19, pp. 50–61, 2022, doi: https://doi.org/10.1016/j.eng.2021.03.027
  2. M. Sohrabi, A. Keshavarzi, M. Javan, “Impact of bed sill shapes on scour protection in river bed and banks,” International Journal of River Basin Management, vol. 17, no. 3, pp. 277–287, Jul. 2019, doi: https://doi.org/10.1080/15715124.2018.1498855
  3. A. R. Shahriar, A. C. Ortiz, B. M. Montoya, M. A. Gabr, “Bridge Pier Scour: An overview of factors affecting the phenomenon and comparative evaluation of selected models,” Transportation Geotechnics, vol. 28, p. 100549, 2021, doi: https://doi.org/10.1016/j.trgeo.2021.100549
  4. B. Le, “Training rivers with longitudinal walls long-term morphological responses,” Geboren te Quang Nam, 2018, doi: https://doi.org/10.4233/uuid:cf588b41-0bcc-490f-9cf0-ea0d95a92678
  5. J. Toapaxi, L. Galiano, M. Castro, X. Hidalgo, and N. Valencia, “Análisis de la socavación en cauces naturales,” Revista Politécnica, vol. 35, no. 3, 2015.
  6. P. M. Biron, C. Robson, M. F. Lapointe, and S. J. Gaskin, “Three-dimensional flow dynamics around deflectors,” River Res Appl, vol. 21, no. 9, pp. 961–975, Nov. 2005, doi: https://doi.org/10.1002/rra.852
  7. J. C. Príncipe, “Evaluación de los puentes con socavación ubicados en la provincia de Yungay - Ancash,” Universidad San Pedro, Huaraz, 2018.
  8. N. Taha, M. M. El-Feky, A. A. El-Saiad, I. Fathy, “Numerical investigation of scour characteristics downstream of blocked culverts,” Alexandria Engineering Journal, vol. 59, no. 5. pp. 3503–3513, Oct. 01, 2020, doi: https://doi.org/10.1016/j.aej.2020.05.032
  9. S. W. Coronación, “Evaluación de impactos por la extracción de agregados para la construcción en el cauce del río Achamayo, Concepción - Junín,” Universidad Peruana Los Andes, Huancayo, 2017.
  10. E. E. Cañas, “Estudio de la socavación local en pilas circulares de puentes en lechos no cohesivos con modelación física en laboratorio,” Bogotá, 2018.
  11. S. Barbosa, “Metodología para calcular la profundidad de socavación general en ríos de montaña (lecho de gravas),” Universidad Nacional, Medellín, 2013.
  12. A. Khosronejad, P. Diplas, D. Angelidis, Z. Zhang, N. Heydari, F. Sotiropoulos, “Scour depth prediction at the base of longitudinal walls: a combined experimental, numerical, and field study,” Environmental Fluid Mechanics, vol. 20, no. 2, pp. 459–478, 2019, doi: https://doi.org/10.1007/s10652-019-09704-x
  13. S. Maynord, “Toe-Scour Estimation in Stabilized Bendways,” Journal of Hydraulic Engineering, vol. 122, no. 8, pp. 460–464, Aug. 1996, doi: https://doi.org/10.1061/(ASCE)0733-9429(1996)122:8(460)
  14. Mussetter Engineering Inc., “Sediment and erosion design guide,” 2008.
  15. Z. Tang et al., “Countermeasures for local scour at offshore wind turbine monopile foundations: A review,” Water Science and Engineering, vol. 15, no. 1, pp. 15–28, 2022, doi: https://doi.org/10.1016/j.wse.2021.12.010
  16. A. Fathi, S. M. A. Zomorodian, “Effect of Submerged Vanes on Scour Around a Bridge Abutment,” KSCE Journal of Civil Engineering, vol. 22, no. 7, pp. 2281–2289, 2018, doi: https://doi.org/10.1007/s12205-017-1453-5
  17. A. Radice and V. Davari, “Roughening Elements as Abutment Scour Countermeasures,” Journal of Hydraulic Engineering, vol. 140, no. 8, p. 06014014, Aug. 2014, doi: https://doi.org/10.1061/(ASCE)HY.1943-7900.0000892
  18. A. Bayon, D. Valero, R. García-Bartual, F. José Vallés-Morán, P. A. López-Jiménez, “Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump,” Environmental Modelling & Software, vol. 80, pp. 322–335, 2016, doi: https://doi.org/10.1016/j.envsoft.2016.02.018
  19. T. Fischer-Antze, N. Rüther, N. R. B. Olsen, D. Gutknecht, “Three-dimensional (3D) modeling of non-uniform sediment transport in a channel bend with unsteady flow,” Journal of Hydraulic Research, vol. 47, no. 5, pp. 670–675, 2009, doi: https://doi.org/10.3826/jhr.2009.3252
  20. N. R. B. Olsen, H. M. Kjellesvig, “Three-dimensional numerical flow modeling for estimation of maximum local scour depth,” Journal of Hydraulic Research, vol. 36, no. 4, pp. 579–590, Jul. 1998, doi: https://doi.org/10.1080/00221689809498610
  21. I. S. Pereira, H. D. Leitao, M. C. Fael, “Flow-3D Modelling of the Debris Effect on Maximun Scour Hole Depth at Bridge Piers,” in 38th IAHR World Congress - Water: Connecting the World,” The International Association for Hydro-Environment Engineering and Research (IAHR), 2019, pp. 2813–2821, doi: https://doi.org/10.3850/38wc092019-1850
  22. H. Pourshahbaz, S. Abbasi, P. Taghvaei, “Numerical scour modeling around parallel spur dikes in FLOW-3D,” Drink Water Eng Sci, pp. 1–16, 2017, doi: https://doi.org/10.5194/dwes-2017-21
  23. H. Y. Chona-Jurado, N. J. Cely-Calixto, and G. A. Carrillo-Soto, “Comparación obras de reducción del riesgo sobre áreas de amenaza alta por inundación sobre un sector de la Quebrada Tonchala en San José de Cúcuta,” Revista UIS Ingenierías, vol. 22, no. 3, Sep. 2023, doi: https://doi.org/10.18273/revuin.v22n3-2023012
  24. P. Mesa, J. Martín-Ortega, J. Berbel, “Análisis multicriterio de preferencias sociales en gestión hídrica bajo la Directiva Marco del Agua Multicriteria analysis of water management under the Water Framework Directive,” Economia Agraria y Recursos Naturales, 2008, doi: https://doi.org/10.22004/ag.econ.57236
  25. D. Smith, C. A. Graciano Gallego, M. Martínez, “Análisis multi-criterio para evaluar la capacidad de absorción de energía de tubos fabricados con láminas de metal expandido y sólidas,” Revista UIS Ingenierías, vol. 17, no. 1, pp. 69–80, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018007
  26. N. C. Calixto, M. C. Zambrano, A. G. Castaño, G. C. Soto, “Analysis of a three-dimensional numerical modeling approach for predicting scour processes in longitudinal walls of granular bedding rivers,” EUREKA, Physics and Engineering, vol. 2023, no. 4, pp. 168–179, 2023, doi: https://doi.org/10.21303/2461-4262.2023.002682
  27. N. Kardan, Y. Hassanzadeh, H. Hakimzadeh, “The effect of combined countermeasures on main local scouring parameters using physical models,” Arabian Journal of Geosciences, vol. 10, no. 23, 2017, doi: https://doi.org/10.1007/s12517-017-3304-6
  28. R. Gaudio, A. Tafarojnoruz, F. Calomino, “Combined flow-altering countermeasures against bridge pier scour,” Journal of Hydraulic Research, vol. 50, no. 1, pp. 35–43, 2012, doi: https://doi.org/10.1080/00221686.2011.649548
  29. M. Shafai, K. Khademi, H. Kozeymehnezhad, “Submerged vane-attached to the abutment as scour countermeasure,” Ain Shams Engineering Journal, vol. 6, no. 3, pp. 775–783, 2015, doi: https://doi.org/10.1016/j.asej.2015.02.006
  30. T. L. Saaty, Toma de decisiones para líderes. Rws Publications, 2014.
  31. F. Muñoz-Sarria, M. Bueno-López, “Metodología para la selección de tecnologías en proyectos de energización rural,” Revista UIS Ingenierías, vol. 21, no. 3, 2022, doi: https://doi.org/10.18273/revuin.v21n3-2022008
  32. L. G. Castillo, J. T. García, J. M. Carrillo, “VII Jornadas de Ingeniería del Agua,” in La resiliencia de las infraestructuras hidráulicas frente al cambio climático, Cartagena, 2023, pp. 1–726.