Vol. 22 No. 4 (2023): Revista UIS Ingenierías
Articles

Power aggregator in active distribution networks using IoT

Santiago Alberto Ramírez - Marín
Universidad Tecnológica de Pereira
Juan Camilo Oyuela - Ocampo
Universidad Tecnológica de Pereira
Alejandro Garcés-Ruiz
Universidad Tecnológica de Pereira

Published 2023-11-01

Keywords

  • active distribution networks,
  • power aggregation,
  • economic dispatch,
  • alternating direction method of multipliers,
  • quasi-dynamic simulation,
  • internet of the things
  • ...More
    Less

How to Cite

Ramírez - Marín , S. A. ., Oyuela - Ocampo , J. C. ., & Garcés-Ruiz, A. (2023). Power aggregator in active distribution networks using IoT. Revista UIS Ingenierías, 22(4), 71–80. https://doi.org/10.18273/revuin.v22n4-2023007

Abstract

This paper presents an Internet of Things (IoT) architecture for a power aggregator of energy resources in active distribution networks. Two types of algorithms are evaluated and compared: centralized and decentralized control. The former is based on real-time estimation of the demand and subsequent optimization. The latter is based on the Alternating Direction Method of Multipliers (ADMM). Both algorithms were evaluated on an IoT platform consisting of agents implemented on a series of small single-board computers based on Raspberry Pi technology, connected to a centralized computer that emulates the grid. This platform allows realistic evaluation of the algorithms, considering the effects of communication. The main grid considers power losses and the dynamics of inverter-based renewable resources using quasi-dynamic simulation. This type of simulation can be considered real-time for this application. The platform is demonstrated to be flexible and provides a real view of the practical problems that aggregators may face when implementing them in a power distribution network.

Downloads

Download data is not yet available.

References

  1. K. Alshehri, M. Ndrio, S. Bose, T. Başar, “Quantifying Market Efficiency Impacts of Aggregated Distributed Energy Resources,” in IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 4067-4077, Sept. 2020, doi: https://doi.org/10.1109/TPWRS.2020.2979997
  2. Cigre Colombia C4 working group. “Control en Microrredes de A.C: Control Jerárquico, Tecnologías y Normativa” in CIGRE, available online: http://www.cigrecolombia.org/Documents/Documentos-t%c3%a9cnicos/DT-6.2-Control
  3. T. Morstyn, A. Teytelboym, M. D. Mcculloch, “Bilateral Contract Networks for Peer-to-Peer Energy Trading,” in IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2026-2035, March 2019, doi: https://doi.org/10.1109/TSG.2017.2786668
  4. N. Patrizi, S. K. Latouf, E. E. Tsiropoulou, S. Papavassiliou, “Prosumer-Centric Self-Sustained Smart Grid Systems”, in IEEE Systems Journal, vol. 16, no. 4, pp. 6042-6053, Dec. 2022, doi: https://doi.org/10.1109/JSYST.2022.3156877
  5. G. E. Asimakopoulou, N. D. Hatziargyriou, “Evaluation of Economic Benefits of DER Aggregation,” in IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 499-510, April 2018, doi: https://doi.org/10.1109/TSTE.2017.2743349
  6. C. S. Edrington, M. Steurer, J. Langston, T. El-Mezyani, K. Schoder, “Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in Power and Energy Systems,” in Proceedings of the IEEE, vol. 103, no. 12, pp. 2401-2409, Dec. 2015, doi: https://doi.org/10.1109/JPROC.2015.2460676
  7. Z. R. Ivanović, E. M. Adžić, M. S. Vekić, S. U. Grabić, N. L. Čelanović, V. A. Katić, “HIL Evaluation of Power Flow Control Strategies for Energy Storage Connected to Smart Grid Under Unbalanced Conditions,” in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4699-4710, Nov. 2012, doi: https://doi.org/10.1109/TPEL.2012.2184772
  8. A. B. C. De Farias, R. S. Rodrigues, A. Murilo, R. V. Lopes, S. Avila, “Low-Cost Hardware-in-the-Loop Platform for Embedded Control Strategies Simulation,” in IEEE Access, vol. 7, pp. 111499-111512, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2934420
  9. A. Garcés-Ruiz, “Power Flow in Unbalanced Three-Phase Power Distribution Networks Using Matlab: Theory, analysis, and quasi-dynamic Simulation”, Ingenieria., vol. 27, no. 3, p. e19252, 2022.
  10. L. Catro, M. Bravo, A. Ríos, C. García, Garcés, M. Bueno, J. J. Mora, et al, “Control jerárquico en micro-redes AC” Colección trabajos de investigación. Editorial UTP. ISBN 978-958-722-553-2.
  11. D. A. Ramirez, A. Garcés, J. J. Mora, “A Convex Approximation for the Tertiary Control of Unbalanced Microgrids”, in Electric Power Systems Research, vol. 199, no. 107423, 2021, doi: https://doi.org/10.1016/j.epsr.2021.107423
  12. Berry, R.A, “On Proportional Power Sharing Mechanisms for Secondary Spectrum Markets”, in Northwestern University, Dept. of EECS.
  13. G. Chen, Q. Yang, “An ADMM-Based Distributed Algorithm for Economic Dispatch in Islanded Microgrids”, in IEEE Transactions On Industrial Informatics, vol. 14, September, 2018.
  14. G. Stomberg, A. Engelmann, T. Faulwasser, “A compendium of optimization algorithms for distributed linear-quadratic MPC,” at - Automatisierungstechnik, vol. 70, no. 4, 2022, pp. 317-330. https://doi.org/10.1515/auto-2021-0112
  15. A. Garcés, “Optimización convexa: Aplicaciones en operación y dinámica de sistemas de potencia,” Colección textos académicos. Editorial UTP. ISBN 978-958-722-466-5.
  16. F. E. Abrahamsen, Y. Ai, M. Cheffena, “Communication Technologies for Smart Grid: A Comprehensive Survey,” Sensors, 2021, doi: https://doi.org/10.3390/s21238087
  17. B. Aljafari, S. Vasantharaj, V. Indragandhi, R. Vaibhav, “Optimization of dc, ac, and hybrid ac/dc microgrid-based iot systems: A review,” Energies, vol. 15, no. 18, 2022.
  18. S. Papathanassiou; N. Hatziargyriou, K. Strunz, “A benchmark low voltage microgrid network,” In: CIGRE symposium on power systems with dispersed generation, 2005.
  19. M. Sun, S. Zou, Y. Gou, X. Nian, “Projection-based distributed economic dispatch algorithm considering communication delays under switching topologies,” in International Journal of Electrical Power & Energy Systems, vol. 152, no. 109266, 2023, doi: https://doi.org/10.1016/j.ijepes.2023.109266