Vol. 22 No. 4 (2023): Revista UIS Ingenierías
Articles

New data-based load modeling for active distribution networks

Daladier Osorio-Vásquez
Universidad Tecnológica de Pereira
Sandra Pérez-Londoño
Universidad Tecnológica de Pereira
Juan Mora-Flórez
Universidad Tecnológica de Pereira

Published 2023-11-15

Keywords

  • active distribution network,
  • data-based models,
  • distributed energy resources,
  • dynamic models,
  • load modeling,
  • measurement-based models’ parameterization,
  • static models
  • ...More
    Less

How to Cite

Osorio-Vásquez , D. ., Pérez-Londoño , S. ., & Mora-Flórez , J. . (2023). New data-based load modeling for active distribution networks. Revista UIS Ingenierías, 22(4), 93–102. https://doi.org/10.18273/revuin.v22n4-2023009

Abstract

Electric systems are experiencing fast development, mainly motivated by the carbon reduction policies in the energy sector and the technological developments that introduce new elements and processes. The transition to active distribution networks (ADNs) represents a significant technological advancement in this ever-evolving context. Accurate models for each device present in ADNs are crucial for adequately representing their dynamics; however, load modeling poses challenges due to the vast diversity of load components, variations over time, and dependence on several factors. Despite these challenges, understanding load behavior is fundamental for efficient planning and operation of ADNs. Therefore, precise load models are indispensable for conducting preventive and forensic studies. This paper analyzes various scientific documents from the most relevant scientific databases, explicitly focusing on the challenge of measurement-based load modeling in ADNs. The main contribution of this document lies in enhancing the representation and understanding of loads in ADNs through the analysis of current approaches, challenges, and measurement-based modeling strategies. Additionally, it serves as a reference for future research in the field of load modeling.

Downloads

Download data is not yet available.

References

  1. N. Pourghaderi, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, M. Kabirifar y M. Lehtonen, “Exploiting DERs’ Flexibility Provision in Distribution and Transmission Systems Interface,” IEEE Transactions on Power Systems, vol. 38, pp. 1963-1977, 2023, doi: https://doi.org/10.1109/TPWRS.2022.3209132
  2. J. Flores-Robert, J. Brouwer, “Optimal design of a distributed energy resource system that economically reduces carbon emissions,” Applied Energy, vol. 232, pp. 119-138, 2018, doi: https://doi.org/10.1016/j.apenergy.2018.09.029
  3. S. P. Chowdhury, P. Crossley, Microgrids and active distribution networks. London, United Kingdom, 2009, doi: https://doi.org/10.1049/PBRN006E
  4. C. Wang, P. Ju, F. Wu, X. Pan y Z. Wang, “A systematic review on power system resilience from the perspective of generation, network, and load,” Renewable and Sustainable Energy Reviews, vol. 112567, p. 112567, 2022, doi: https://doi.org/10.1016/j.rser.2022.112567
  5. A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, D. Zhao, “Load modeling—A review,” IEEE Transactions on Smart Grid, vol. 9, pp. 5986-5999, 2017.
  6. L. Chávarro, S. Pérez, J. Mora, “An adaptive approach for dynamic load modeling in microgrid,” IEEE Transactions on Smart Grid, vol. 12, pp. 2834-2843, 2021, doi: https://doi.org/10.1109/TSG.2021.3064046
  7. M. Roos, P. H. Nguyen, J. Morren, J. Slootweg, “Modeling and experimental validation of power electronic loads and DERs for microgrid islanding simulations,” IEEE Transactions on Power Systems, vol. 35, pp. 2279-2288, 2019, doi: https://doi.org/10.1109/TPWRS.2019.2953757
  8. “IEEE Guide for Load Modeling and Simulations for Power Systems,” IEEE Std 2781-2022, pp. 1-88, 2022.
  9. L. Rodríguez, S. Pérez, J. Mora, “Measurement-based exponential recovery load model: Development and validation,” Dyna, vol. 83, pp. 131--140, 2015.
  10. G. Mitrentsis, H. Lens, “Unsupervised learning method for clustering dynamic behavior in the context of power systems,” IFAC-PapersOnLine, vol. 53, pp. 13024--13029, 2020, doi: https://doi.org/10.1016/j.ifacol.2020.12.2170
  11. E. O. Kontis, T. A. Papadopoulos, M. H. Syed, E. Guillo, G. H. Burt, G. K. Papagiannis, “Artificial-intelligence method for the derivation of generic aggregated dynamic equivalent models,” IEEE Transactions on Power Systems, vol. 34, pp. 2947-2956, 2019, doi: https://doi.org/10.1109/TPWRS.2019.2894185
  12. G. Mitrentsis, H. Lens, “Probabilistic dynamic model of active distribution networks using Gaussian processes,” IEEE Madrid PowerTech, pp. 1-6, 2021, doi: https://doi.org/10.1109/PowerTech46648.2021.9494816
  13. G. Mitrentsis, H. Lens, “A Gaussian process framework for the probabilistic dynamic modeling of active distribution networks using exogenous variables,” Electric Power Systems Research, vol. 211, p. 108403, 2022, doi: https://doi.org/10.1016/j.epsr.2022.108403
  14. S. Pérez, A. Garcés, M. Bueno, J. Mora, “Modelizado de componentes en micro-redes AC, Pereira, Colombia”, Universidad Tecnológica de Pereira, 2020.
  15. D. Karlsson, D. Hill, “Modelling and identification of nonlinear dynamic loads in power systems,” IEEE Transactions on Power Systems, vol. 9, pp. 157-166, 1994.
  16. C. Wang, Z. Wang, J. Wang, D. Zhao, “SVM-based parameter identification for composite ZIP and electronic load modeling,” IEEE Transactions on Power Systems, vol. 34, pp. 182-193, 2018, doi: https://doi.org/10.1109/TPWRS.2018.2865966
  17. S. Arora, P. Balsara, D. Bhatia, “Digital implementation of constant power load (CPL), active resistive load, constant current load and combinations,” 2016 IEEE Dallas Circuits and Systems Conference (DCAS), pp. 1--4, 2016, doi: https://doi.org/10.1109/DCAS.2016.7791138
  18. M. Overlin, C. Smith, J. Kirtley, “A hybrid algorithm for parameter estimation (HAPE) for dynamic constant power loads,” IEEE Transactions on Industrial Electronics, vol. 68, pp. 10326-10335, 2020, doi: https://doi.org/10.1109/TIE.2020.3029470
  19. M. Jahromi, M. Ameli, “Measurement-based modelling of composite load using genetic algorithm,” Electric Power Systems Research, vol. 158, pp. 82-91, 2018, doi: https://doi.org/10.1016/j.epsr.2017.12.023
  20. A. Rouhani, A. Abur, “Real-time dynamic parameter estimation for an exponential dynamic load model,” IEEE Transactions on Smart Grid, vol. 7, pp. 1530-1536, 2015, doi: https://doi.org/10.1109/TSG.2015.2449904
  21. E. Polykarpou, E. Kyriakides, “Parameter estimation for measurement-based load modeling using the Levenberg-Marquardt algorithm,” 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1-6, 2016, doi: https://doi.org/10.1109/MELCON.2016.7495363
  22. S. Rizvi, S. Sadanandan, A. Srivastava, “Real-time parameter tracking of power-electronics interfaced composite ZIP load model,” IEEE Transactions on Smart Grid, vol. 13, pp. 3891-3902, 2021, doi: https://doi.org/10.1109/TSG.2021.3119507
  23. B. Choi, H. Chiang, Y. Li, H. Li, Y. Chen, D. Huang, M. Lauby, “Measurement-based dynamic load models: derivation, comparison, and validation,” IEEE Transactions on Power Systems, vol. 21, pp. 1276-1283, 2006, doi: https://doi.org/10.1109/TPWRS.2006.876700
  24. F. Tuffner, K. Schneider, J. Hansen, M. Elizondo, “Modeling load dynamics to support resiliency-based operations in low-inertia microgrids,” IEEE Transactions on Smart Grid, vol. 10, pp. 2726-2737, 2018, doi: https://doi.org/10.1109/TSG.2018.2809452
  25. A. Mahdavian, A. Ghadimi, M. Bayat, “Microgrid small-signal stability analysis considering dynamic load model,” IET Renewable Power Generation, vol. 15, pp. 2799--2813, 2021, doi: https://doi.org/10.1049/rpg2.12203
  26. J. Penaloza, J. Adu, A. Borghetti, F. Napolitano, F. Tossani, C. Nucci, “Influence of load dynamic response on the stability of microgrids during islanding transition,” Electric Power Systems Research, vol. 190, p. 106607, 2021, doi: https://doi.org/10.1016/j.epsr.2020.106607
  27. K. Rahmati, R. Ebrahimi, V. Darabad, “Optimal dynamic multi-microgrid structuring for improving distribution system resiliency considering time-varying voltage-dependent load models,” Electric Power Systems Research, vol. 221, p. 109488, 2023, https://doi.org/10.1016/j.epsr.2023.109488
  28. G. Mitrentsis, H. Lens, “Data-driven dynamic models of active distribution networks using unsupervised learning techniques on field measurements,” IEEE Transactions on Smart Grid, vol. 12, pp. 2952-2965, 2021, https://doi.org/10.1109/TSG.2021.3057763
  29. E. Kontis, G. Papagiannis, M. Syed, E. Guillo, G. Burt, T. Papadopoulos, A. Chrysochos, “Development of measurement-based load models for the dynamic simulation of distribution grids,” 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1-6, 2017.
  30. C. Zheng, S. Wang, Y. Liu, C. Liu, W. Xie, C. Fang y S. Liu, “A novel equivalent model of active distribution networks based on LSTM,” IEEE transactions on neural networks and learning systems, pp. 2611--2624, 2019, doi: https://doi.org/10.1109/TNNLS.2018.2885219
  31. P. Wang, Z. Zhang, Q. Huang, X. Tang, W. Lee, “Robustness-improved method for measurement-based equivalent modeling of active distribution network,” IEEE Transactions on Industry Applications, vol. 57, pp. 2146--2155, 2021, doi: https://doi.org/10.1109/TIA.2021.3057358