Quantized magnetic flux in a two-band superconducting condensate with a type-Kagome pinning center lattice
Published 2024-06-10
Keywords
- Ginzburg-Landau,
- Superconductor,
- Type-II,
- Shubnikov-state,
- Vortices
- Kagome lattice ...More
How to Cite
Copyright (c) 2024 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In this work we studied the vortex-configuration in a mesoscopic superconducting square in presence of an external magnetic field H applied parallel to its surface vector. We study the magnetization curves in a complete loop, the magnretic induction and the superconducting-electron density for the sample considering Neumann boundary conditions for the order parameter, via length Gennes extrapolation . The sample presents a pinnin center as a Kagome-type laticce at different critical temperature. We solve the generalized time-dependent Ginzburg-Landau equations for a two-condensate system using the Link-variable method considering a Field-Cooling process. Our results show that the vortices are always located at the pinning centers in non-conventional configurations, due to cuopling used.
Downloads
References
- J. Barba-Ortega, M. R. Joya, E. Sardella, “ Resistive state of a thin superconducting strip with an engineered central defect”, The European Physical Journal B, vol. 92, no. 143, 2019, doi: https://doi.org/10.1140/epjb/e2019-100082-y
- G. J. Kimmel, A. Glatz, V. M. Vinokur, I. A. Sadovskyy, “Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects,” Sci. Reports,vol. 9, no. 1, 2019, doi: https://doi.org/10.1038/s41598-018-36285-4
- V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck and Y. Bruynseraede, “Effect of sample topology on the critical fields of mesoscopic superconductors,” Nature vol. 373, 1995, doi: https://doi.org/10.1038/373319a0
- C. Aguirre, M. R. Joya, J. Barba-Ortega, “Released power in a vortex-antivortex pairs annihilation process,” Revista UIS Ingenierias, vol. 20, no. 1, 2021, doi: https://doi.org/10.18273/revuin.v20n1-2021014
- C. Aguirre, M. R. Joya, J. Barba-Ortega, “Dimer structure as topological pinning center in a superconducting sample,” Revista UIS Ingenierias, vol. 20, no. 1, 2020, doi: https://doi.org/10.18273/revuin.v19n1-2020011
- J. Carlstrom, E. Babaev, M. Speight, “Type-1.5 superconductivity in multiband systems: Effects of interband couplings,” Phys. Rev. B., vol. 83, 2011, doi: https://doi.org/10.1103/PhysRevB.83.174509
- C. Aguirre, J. Faundez, J. Barba-Ortega, “Vortex state in a superconducting mesoscopic irregular octagon,” Mod. Phys. Lett. B., vol. 36, 10, 2022, doi: https://doi.org/10.1142/S0217984922500294
- C. Aguirre, M. R. Joya, J.Barba-Ortega, “Vortex state in a two-condensate superconducting film considering a topological coupling, ” Mod. Phys. Lett. B, vol 37, no. 38, 2023, doi: https://doi.org/10.1142/S021798492350001X
- C. Aguirre, A. de Arruda, J. Faundez, J. Barba-Ortega, “ZFC process in 2+1 and 3+1 multi-band superconductor,” Physica B: Condensed Matter, vol. 615, 2021, doi: https://doi.org/10.1016/j.physb.2021.413032
- J. Tindall, F. Schlawin, M. Buzzi, D. Nicoletti, J. R. Coulthard, H. Gao, A. Cavalleri, M. A. Sentef, D. Jaksch, “Dynamical Order and Superconductivity in a Frustrated Many-Body System,” Phys. Rev. Lett., vol. 125, 2020, doi: https://doi.org/10.1103/PhysRevLett.125.137001
- E. F. Galindez, J. A. Rojas, D. Sachez, D. A. Landinez, J. Roa, “Propiedades ópticas, eléctricas, estructurales y morfológicas de arcilla mineral KAl4Si2O12/Mg3Si2O9/Fe2O3 de la región montañosa de Machado, Tarairá, Colombia” Revista Ciencia en Desarrollo, vol. 13, no. 1, pp. 43-55, 2022, doi: https://doi.org/10.19053/01217488.v13.n1.2022.12884
- W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-ii superconductors,” J. Comput. Phys., vol. 123, no. 2, 1996, doi: https://doi.org/10.1006/jcph.1996.0022
- G. Buscaglia, C. Bolech, C. Lopez, Connectivity and Superconductivity. Heidelberg: Springer, 2000, doi: https://doi.org/10.1007/3-540-44532-3
- P. G. de Gennes, Superconductivity in Metals and Alloys, Westview Pres, 1989. [Online]. Available: https://library.navoiy-uni.uz/files/gennes%20p.d.,%20pincus%20p.a.%20-%20superconductivity%20of%20metals%20and%20alloys%20(1999)(274s).pdf
- Z. P. Yin, K. Haule, G. Kotliar, “Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: Insights from first-principles calculations,” Phys. Rev. B, vol. 86, 2012, doi: https://doi.org/10.1103/PhysRevB.86.195141
- J. Clepkens, A. W. Lindquist, X. Liu, H. Kee, “Higher angular momentum pairings in interorbital shadowed-triplet superconductors: Application to Sr2RuO4,” Phys. Rev. B., vol. 104, 2021, doi: https://doi.org/10.1103/PhysRevB.104.104512
- S. Chaudhar, Shama, J. Singh, A. Consiglio, D. Di Sante, R. Thomale, Y. Singh, “Role of electronic correlations in the kagome-lattice superconductor LaRh3B2,” Phys. Rev. B., vol. 107, 2023, doi: https://doi.org/10.1103/PhysRevB.107.085103
- M. Shi, F. Yu, Y. Yang, F. Meng, B. Lei, Y. Luo, Z. Sun, J. He, R. Wang, Z. Jiang, Z. Liu, D. Shen, T. Wu, Z. Wang, Z. Xiang, J. Ying and X. Chen, “A new class of bilayer kagome lattice compounds with Dirac nodal lines and pressure-induced superconductivity,” Nature Communicatios, vol. 13, 2022, doi: https://doi.org/10.1038/s41467-022-30442-0
- H. Jiang, M. Liu, S. Yu, “Impact of the orbital current order on the superconducting properties of the kagome superconductors, ” Phys. Rev. B., vol. 107, 2023, doi: https://doi.org/10.1103/PhysRevB.107.064506
- F. Du, R. Li, S. Luo, Y. Gong, L. Yanchun, J. Sheng, R. B. ˙Ortiz, Y. Liu, X. Xu, S. D. Wilson, C. Cao, Y. Song, H. Yuan, “Superconductivity modulated by structural phase transitions in pressurized vanadium-based kagome metals,” Phys. Rev. B., vol. 106, 2022, doi: https://doi.org/10.1103/PhysRevB.106.024516
- S. Gazit, M. Randeria, A. Vishwanath, “Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories,” Nature Physics, vol. 13, pp. 484-490, 2017, doi: https://doi.org/10.1038/nphys4028
- T. Neupert, M. Denner, J. Yin, R. Thomale M. Zahid Hasan, “Charge order and superconductivity in kagome materials,” Nature Physics,vol. 18, 2022, doi: https://doi.org/10.1038/s41567-021-01404-y
- K. Jiang, T. Wu, J. Yin, Z. Wang, M. Hasan, S. Wilson, X. Chen J. Hu, “Kagome superconductors AV3Sb5 (A = K, Rb, Cs),” National Science Review, vol. 10, 2023, doi: https://doi.org/10.1093/nsr/nwac199
- J. S. Leon. M. R. Joya and J. Barba-Ortega, “Kagome–Honeycomb structure produced using a wave laser in a conventional superconductor,” Optik- International Journal for Light and Electron Optics, vol. 172, pp. 311-316, 2018, doi: https://doi.org/10.1016/j.ijleo.2018.07.036
- R. Lou, A. Fedorov, Q. Yin, A. Kuibarov, Z. Tu, C. Gong, E. F. Schwier, B. Buchner, H. Lei, S. Borisenko, “Charge-Density-Wave-Induced Peak-Dip-Hump Structure and the Multiband Superconductivity in a Kagome Superconductor CsV3Sb5,” Phys. Rev. Lett., vol. 128, 2022, doi: https://doi.org/10.1103/PhysRevLett.128.036402
- S. J. Chapman, Q. Du, M. S. Gunzburger, Z. Angnew, “A model for variable thickness superconducting thin films,” Math. Phys., vol. 47, 1996, doi: https://doi.org/10.1007/BF00916647
- Q. Du. M. D. Gunzburger, J. S. Peterson, “Computational simulation of type-II superconductivity including pinning phenomena,” Phys. Rev. B., vol. 51, 1995, doi: https://doi.org/10.1103/PhysRevB.51.16194
- Q. Du, M.D. Gunzburger, “A model for superconducting thin films having variable thickness,” Physica D: Nonlinear Phenomena, vol. 69, 1993, doi: https://doi.org/10.1016/0167-2789(93)90089-J
- V. S. Souto E. C. S. Duarte, E. Sardella, R. Zadorosny, “Kinematic vortices induced by defects in gapless superconductors,” Phys. Lett. A., vol. 419, 2021, doi: https://doi.org/10.1016/j.physleta.2021.127742