Vol. 23 No. 1 (2024): Revista UIS Ingenierías
Articles

Potential Use of Fryze’s Approach-Based Power Theories in Waveform Distortion Contribution Assessment

Camilo Garzón
Universidad Nacional de Colombia
Ana María Blanco
Dresden University of Technology
Andrés Pavas
Universidad Nacional de Colombia
Jan Meyer
Dresden University of Technology

Published 2024-01-31

Keywords

  • Power Theories,
  • Responsibilities Assessment,
  • Power Quality,
  • Disturbances

How to Cite

Garzón , C., Blanco , A. M. ., Pavas , A. ., & Meyer , J. . (2024). Potential Use of Fryze’s Approach-Based Power Theories in Waveform Distortion Contribution Assessment. Revista UIS Ingenierías, 23(1), 25–38. https://doi.org/10.18273/revuin.v23n1-2024003

Abstract

This paper explores the potential of some remarkable power theories derived from Fryze’s approach to assessing waveform distortion contributions. The analysis is limited to a simplified system composed of one load and one voltage source connected by a point of common coupling. Finally, some keys to assess are proposed for two types of systems: strong networks (traditional distribution systems) and weak networks (islanded microgrids).

Downloads

Download data is not yet available.

References

  1. IEEE, “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1–29, 2014, doi: https://doi.org/10.1109/IEEESTD.2014.6826459
  2. IEC, “Part 3-6: Limits - Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems,” Electromagnetic compatibility (EMC) - IEC TR Std. 61000-3-6, pp. 1–29, 2008. [Online]. Available: https://webstore.iec.ch/publication/4155
  3. A. Spelko, B. Blazic, I. Papič, M. Pourarab, J. Meyer, X. Xu, and S. Z. Djokic, “Cigre/cired jwg c4.42: Overview of common methods for assessment of harmonic contribution from customer installation,” in 2017 IEEE Manchester PowerTech, pp. pp. 1-6 , 2017, doi: https://doi.org/10.1109/PTC.2017.7981195
  4. T. Pfajfar and I. Papič, “Harmonic emission level estimation based on measurements at the point of evaluation,” in 2011 IEEE Power and Energy Society General Meeting, pp. 1–5, 2011, doi: https://doi.org/10.1109/PES.2011.6039642
  5. C. Garzón, A. Pavas, “Review of responsibilities assignment methods for harmonic emission,” in 2019 IEEE Milan PowerTech, pp. 1–6, 2019, doi: https://doi.org/10.1109/PTC.2019.8810742
  6. R. L. A. E. Emanuel. A. Testa, “Power definitions for circuits with nonlinear and unbalanced loads — the ieee standard 1459-2010,” in 2012 IEEE Power and Energy Society General Meeting, pp. 1–6, 2012, doi: https://doi.org/10.1109/PESGM.2012.6345330
  7. S. Fryze, “Effective reactive and apparent powers in circuits with nonsinusoidal waveforms,” Electrotehn Zeitshrift, vol. 53, pp. 596– 99, 1932.
  8. F. Buchhokz, “Understanding the correct power concept of active and reactive power,” Selbsverlag, Munchen, 1950.
  9. IEEE, “Ieee standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions,” IEEE Std 1459-2010 (Revision of IEEE Std 1459-2000), pp. 1–50, March 2010, doi: https://doi.org/10.1109/IEEESTD.2010.5439063
  10. L. S. Czarnecki, “What is wrong with the budeanu concept of reactive and distortion power and why it should be abandoned,” IEEE Transactions on Instrumentation and Measurement, pp. 834–837, 1987, doi: https://doi.org/10.1109/TIM.1987.6312797
  11. A. Pavas, “Study of responsibilities assignment methods in power quality (summa cum laude),” Ph.D. dissertation, Universidad Nacional de Colombia, Facultad de Ingeniería, 2012.
  12. M. Depenbrock, “The FBD method, a generally applicable tool for analyzing power relations,” IEEE Transaction on Power Systems, pp. 381 – 387, 1993, doi: https://doi.org/10.1109/59.260849
  13. A. Pavas, V. Staudt, H. Torres, “Method of disturbances interaction: Novel approach to assess responsibilities for steady state power quality disturbances among customers,” 14th International Conference on Harmonics and Quality of Power (ICHQP), 2010, doi: https://doi.org/10.1109/ICHQP.2010.5625493
  14. P. M. P. Tenti, “A time-domain approach to power terms definitions under non-sinusoidal conditions,” in 6th Int. Workshop on Power Definitions and Measurement under NonSinwwidal Conditions, Milan, Italy, 2003.
  15. P. M. P. Tenti, H. K. M. Paredes, “Conservative power theory, sequence components and accountability in smart grids,” 2010 International School on Nonsinusoidal Currents and Compensation, pp. 37–45, 2010, doi: https://doi.org/10.1109/ISNCC.2010.5524473
  16. L. S. Czarnecki, “Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source,” in IEEE Transactions on Instrumentation and Measurement, pp. 30–34, 1988.
  17. L. S. Czarnecki, “Currents’ physical components (CPC) concept: A fundamental of power theory,” 2008 International School on Nonsinusoidal Currents and Compensation, pp. 1–11, 2008, doi: https://doi.org/10.1109/ISNCC.2008.4627483
  18. C. Garzón, A. Pavas, “Laplacian eigenvector centrality as tool for assessing causality in power quality,” 2017 IEEE Manchester PowerTech, pp. 1–6, 2017, doi: https://doi.org/10.1109/PTC.2017.7981261
  19. A. Pavas, V. Staudt, and H. Torres, “Statistical analysis of power quality disturbances propagation by means of the method of disturbances interaction,” Conference on Innovative Smart Grids Technologies - Europe (ISGT-EU), 2012, doi: https://doi.org/10.1109/ISGTEurope.2012.6465817
  20. IEEE, “IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions,” IEEE Std 1459-2010 (Revision of IEEE Std 1459-2000), pp. 1–50, 2010, doi: https://doi.org/10.1109/IEEESTD.2010.5439063
  21. S. Yanchenko, J. Meyer, “Harmonic emission of household devices in presence of typical voltage distortions,” 2015 IEEE Eindhoven PowerTech, pp. 1–6, 2015, doi: https://doi.org/10.1109/PTC.2015.7232518
  22. P. Penfield, R. Spence, S. Duinker, “A generalized form of tellegen’s theorem,” IEEE Transactions on Circuit Theory, vol. 17, no. 3, pp. 302-305, 1970, doi: https://doi.org/10.1109/TCT.1970.1083145
  23. S. Kannan, A. M. Blanco, C. Garzón, A. Pavas, and J. Meyer, “Harmonic impedance characteristics in an islanded microgrid and its impact on voltage and current harmonics,” 2021 IEEE Madrid PowerTech, pp. 1–6, 2021, doi: https://doi.org/10.1109/PowerTech46648.2021.9494905