Published 2024-11-20
Keywords
- spectral classification,
- single pixel camera,
- diffractive optical camera,
- multilevel phase maskt,
- end-to-end optimization
- deep neural networks ...More
How to Cite
Copyright (c) 2024 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Spectral classification allows material labeling based on spectral information. Single-pixel cameras (SPCs) have been used as a low-cost solution for acquiring spectral images, providing high-resolution spectral and low-resolution spatial information. Also, diffractive optical cameras (DOCs) based on multilevel phase masks (MPMs) can acquire spectral features to perform classification tasks. Traditional spectral classification approaches have not incorporated SPCs and DOCs into a single optical architecture. This work proposes a dual optical system based on SPC and DOC for spectral classification. Specifically, the height map in the MPM and the deep neural network parameters are jointly learned from end-to-end (E2E) optimization. The proposed method contains an optical layer that describes the dual system, a fusion layer that estimates the spectral image, and a classification network that labels the materials over spectral datasets. The simulation results show an improvement of up to 3% in classification metrics compared to other optical architectures.
Downloads
References
- Q. Weng, “Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends,” ISPRS Journal of photogrammetry and remote sensing, vol. 64, no. 4, pp. 335–344, 2009, doi: https://doi.org/10.1016/j.isprsjprs.2009.03.007
- M. J. Khan, H. S. Khan, A. Yousaf, K. Khurshid, and A. Abbas, “Modern trends in hyperspectral image analysis: A review,” Ieee Access, vol. 6, p. 14118–14129, 2018, doi: https://doi.org/10.1109/ACCESS.2018.2812999
- D. Guzzi, A. Barducci, P. Marcoionni, I. Pippi, “An atmospheric correction iterative method for high spectral resolution aerospace imaging spectrometers,” in 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, doi: https://doi.org/10.1109/IGARSS.2009.5418004
- M. Shimoni, R. Haelterman, C. Perneel, “Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques,” IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 2, pp. 101– 117, 2019, doi: https://doi.org/10.1109/MGRS.2019.2902525
- M. H. Tran, B. Fei, “Compact and ultracompact spectral imagers: technology and applications in biomedical imaging,” Journal of biomedical optics, vol. 28, no. 4, pp. 040 901–040 901, 2023, doi: https://doi.org/10.1117/1.JBO.28.4.040901
- L. Huang, R. Luo, X. Liu, and X. Hao, “Spectral imaging with deep learning,” Light: Science & Applications, vol. 11, no. 1, p. 61, 2022, doi: https://doi.org/10.1038/s41377-022-00743-6
- O. Denk, A. Musiienko, K. Žídek, “Differential single-pixel camera enabling low-cost microscopy in near-infrared spectral region,” Optics express, vol. 27, no. 4, pp. 4562–4571, 2019.
- H. Garcia, C. V. Correa, and H. Arguello, “Multi-resolution compressive spectral imaging reconstruction from single pixel measurements,” IEEE Transactions on Image Processing, vol. 27, no. 12, pp. 6174–6184, 2018, doi: https://doi.org/10.1109/TIP.2018.2867273
- A. Jerez, H. Garcia, and H. Arguello, “Single pixel spectral image fusion with side information from a grayscale sensor,” in 2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI), 2018, doi: https://doi.org/10.1109/ColCACI.2018.8484848
- L. Galvis, D. Lau, X. Ma, H. Arguello, G. R. Arce, “Coded aperture design in compressive spectral imaging based on side information,” Applied optics, vol. 56, no. 22, pp. 6332–6340, 2017, doi: https://doi.org/10.1364/AO.56.006332
- M. Imani and H. Ghassemian, “An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges,” Information fusion, vol. 59, pp. 59–83, 2020, doi: http://dx.doi.org/10.1016/j.inffus.2020.01.007
- C. Hinojosa, K. Sanchez, H. Garcia, and H. Arguello, “C-3spcd: coded aperture similarity constrained design for spatio-spectral classification of single-pixel measurements,” Applied Optics, vol. 61, no. 8, pp. E21–E32, 2022, doi: https://doi.org/10.1364/AO.445326
- J. Bacca, E. Martinez, and H. Arguello, “Computational spectral imaging: a contemporary overview,” JOSA A, vol. 40, no. 4, pp. C115–C125, 2023, doi: https://doi.org/10.1364/JOSAA.482406
- Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and classification of hyperspectral images based on convolutional neural networks,” IEEE transactions on geoscience and remote sensing, vol. 54, no. 10, pp. 6232–6251, 2016, doi: https://doi.org/10.1109/TGRS.2016.2584107
- X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science, vol. 361, no. 6406, pp. 1004– 1008, 2018, doi: https://doi.org/10.1126/science.aat8084
- H. Arguello, S. Pinilla, Y. Peng, H. Ikoma, J. Bacca, and G. Wetzstein, “Shift-variant colorcoded diffractive spectral imaging system,” Optica, vol. 8, no. 11, pp. 1424–1434, 2021, doi: https://doi.org/10.1364/OPTICA.439142
- R. Jacome, J. Bacca, and H. Arguello, “Deepfusion: An end-to-end approach for compressive spectral image fusion,” in 2021 IEEE International Conference on Image Processing (ICIP), IEEE, 2021, doi: https://doi.org/10.1109/ICIP42928.2021.9506692
- J. Bacca, T. Gelvez-Barrera, H. Arguello, “Deep coded aperture design: An end-to-end approach for computational imaging tasks,” IEEE Transactions on Computational Imaging, vol. 7, pp. 1148–1160, 2021, doi: https://doi.org/10.48550/arXiv.2105.03390
- L. Li, L. Wang, W. Song, L. Zhang, Z. Xiong, and H. Huang, “Quantization-aware deep optics for diffractive snapshot hyperspectral imaging,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, doi: https://doi.org/10.1109/CVPR52688.2022.01916
- V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich, F. Heide, and G. Wet- zstein, “End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–13, 2018, doi: https://doi.org/10.1145/3197517.3201333
- H. Garcia, C. V. Correa, and H. Arguello, “Optimized sensing matrix for single pixel multiresolution compressive spectral imaging,” IEEE Transactions on Image Processing, vol. 29, pp. 4243–4253, 2020, doi: https://doi.org/10.1109/TIP.2020.2971150
- C. Hinojosa, J. C. Niebles, and H. Arguello, “Learning privacy-preserving optics for human pose estimation,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, doi: https://doi.org/10.1109/ICCV48922.2021.00257
- M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013.
- E. Vargas, H. Arguello, J. Y. Tourneret, “Spectral image fusion from compressive measurements using spectral unmixing and a sparse representation of abundance maps,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 5043–5053, 2019, doi: https://doi.org/10.1109/TGRS.2019.2895822
- S. H. Chan, X. Wang, O. A. Elgendy, “Plugand-play admm for image restoration: Fixedpoint convergence and applications,” IEEE Transactions on Computational Imaging, vol. 3, no. 1, pp. 84–98, 2016, doi: https://doi.org/10.48550/arXiv.1605.01710
- R. Jacome, J. Bacca, H. Arguello, “D 2uf: Deep coded aperture design and unrolling algorithmfor compressive spectral image fusion,” IEEE Journal of Selected Topics in Signal Processing, 2022, doi: https://doi.org/10.1109/JSTSP.2022.3207663