Published 2024-09-15
Keywords
- Ginzburg-Landau,
- Critical current,
- Superconductivity,
- Vortex state,
- Mesoscopic
How to Cite
Copyright (c) 2024 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
In this contribution, we study the oscillations of the electrical-potential in a mesoscopic superconducting thin film when an external current is applied. We analyze the resistivity and electrical-potential as a function of the applied current for several external applied magnetic field and size of the sample. Also, we have calculated the electrical-potential as a function of the characteristic time. To study this problem, we solve the well know generalized time dependent-Ginzburg-Landau equations using the link-variable method. We found that the critical current decreases when the external magnetic field increases and the size of the sample decreases. Furthermore, the oscillation frequency of the kinematic vortex, evidenced in the oscillations of the electrical potential, is highly dependent on the applied magnetic field.
Downloads
References
- C. Aguirre, M. Rincón-Joya, J. Barba-Ortega, “Cadena infinita de átomos y cadena de Coulomb: método tight binding,” Rev. UIS Ing., vol. 18, no. 2, pp. 11-16, 2019, doi: https://doi.org/10.18273/revuin.v18n2-2019001
- G. J. Kimmel, A. Glatz, V. M. Vinokur, I. A. Sadovskyy, “Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects,” Sci. Reports, vol. 9, no. 1, 2019, doi: https://doi.org/10.1038/s41598-018-36285-4
- V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Haesendonck and Y. Bruynseraede, “Effect of sample topology on the critical fields of mesoscopic superconductors,” Nature, vol. 373, no. 319, 1995, doi: https://doi.org/10.1038/373319a0
- C. Aguirre-Tellez, M. Rincón-Joya, y J. J. Barba-Ortega, “Released power in a vortex-antivortex pairs annihilation process”, Rev. UIS Ing., vol. 20, n.º 1, pp. 153–160, 2021, doi: https://doi.org/10.18273/revuin.v20n1-2021014
- J. Tindall, F. Schlawin, M. Buzzi, D. Nicoletti, J. R. Coulthard, H. Gao, A. Cavalleri, M. A. Sen- tef, and D. Jaksch, “Dynamical Order and Superconductivity in a Frustrated Many-Body System,” Phys. Rev. Lett., vol. 125, 137001, 2020, doi: https://doi.org/10.1103/PhysRevLett.125.137001
- J. Carlstrom, E. Babaev, and M. Speight, “Type-1.5 superconductivity in multiband systems: Effects of interband couplings,” Phys. Rev. B, vol. 83, 174509, 2011, doi: https://doi.org/10.1103/PhysRevB.83.174509
- C. Aguirre, J. Faundez, and J. Barba-Ortega, “Vortex state in a superconducting mesoscopic irregular octagon,” Mod. Phys. Lett. B, vol. 36, 10 2250029, 2022, doi: https://doi.org/10.1142/S0217984922500294
- Raí M. Menezes, José F. S. Neto, Clécio C. de Souza Silva, and Milorad V. Milošević, “Manipulation of magnetic skyrmions by superconducting vortices in ferromagnet-superconductor heterostructures,” Phys. Rev. B 100, 014431, 2019, doi: https://doi.org/10.1103/PhysRevB.100.014431
- V. S. Souto E. C. S. Duarte, E. Sardella, R. Zadorosny, “Kinematic vortices induced by defects in gapless superconductors,” Phys. Lett. A, vol. 419, 127742 2021, doi: https://doi.org/10.1016/j.physleta.2021.127742
- L. R. Cadorim, E. Sardella, C. C. de Souza Silva, “Harnessing the superconducting diode effect through inhomogeneous magnetic fields,” Phys. Rev. App., vol 21, 054040, 2024, doi: https://doi.org/10.1103/PhysRevApplied.21.054040
- L. R. Cadorim, L. V. De Toledo, W. A. Ortiz, J. Berger, E. Sardella, “Closed vortex state in three-dimensional mesoscopic superconducting films under an applied transport current,” Phys. Rev. B, vol. 107, 094515, 2023, doi: https://doi.org/10.1103/PhysRevB.107.094515
- L. R. Cadorim, L. V. De Toledo, W. A. Ortiz, J. Berger, and E. Sardella, “Closed vortex state in three-dimensional mesoscopic superconducting films under an applied transport current,” Phys. Rev. B, vol. 107, 094515, 2023, doi: https://doi.org/10.1103/PhysRevB.107.094515
- P. Sanchez, J. Albino Aguiar and D. Dominguez, “Behavior of the flux-flow resistivity in mesoscopic superconductors,” Physica C, vol. 503, pp. 120-122, 2014, doi: https://doi.org/10.1016/j.physc.2014.02.027
- J. Kargin, H.E. Sanchez Cornejo, K. Zhangozin, T. Zhanabergenov, Zh. Kassymkhanov, J. Seo, S.N. Holmes, C.H.W. Barnes, J. Albino Aguiar, L. De Los Santos Valladares, “Manometric Determination of the Oxygen Diffusion Coefficients in YBa2Cu3−yFeyO6+x,” Journal of Electroceramics, 2024, doi: https://doi.org/10.1007/s10948-024-06796-5
- A. Bustamante Domínguez, A.M. Osorio Anaya, L. De Los Santos Valladares, H. Carhuancho, J.C. González G., G. Cernicchiario, J.A. Feijoo Levano, “Synthesis of YBa2Cu3O7-δ Using Oxalate Precursors and Sol-Gel Method,” Advances in Science and Technology, vol. 47, pp.37-42, 2006, doi: https://doi.org/10.4028/www.scientific.net/AST.47.37
- L. De Los Santos Valladares, H. Sanchez Cornejo, C.H.W. Barnes, N.O. Moreno, A. Bustamante Domínguez, “Texture and magnetic anisotropy of YBa2Cu3O7-x film on MgO substrate,” Journal of Materials Science: Materials in Electronics, vol 31, pp. 21108-21117, 2020, doi: https://doi.org/10.1007/s10854-020-04623-w
- L. De Los Santos Valladares, A. Bustamante Dominguez, R. Bellido Quispe, W. Flores Santibañez, J. Albino Aguiar, C.H.W. Barnes, Y. Majima, “The Irreversibility Line and Curie-Weiss Temperature of the Superconductor LaCaBaCu3-X(BO3)X with x= 0.2 and 0.3,” Physics Procedia, vol. 36, pp. 354-359, 2012, doi: https://doi.org/10.1016/j.phpro.2012.06.244
- G R Berdiyorov, M V Milosevic and F M Peeters, “Dynamics of kinematic vortices in a mesoscopic superconducting loop,” Physica C, vol. 470, no. 19, pp. 946-948, 2010, doi: https://doi.org/10.1016/j.physc.2010.02.028
- G R Berdiyorov, A Elmurodov, F M Peeters and D Y Vodolazov, “Finite-size effect on the resistive state in a mesoscopic type-II superconducting stripe,” Phys. Rev. B, vol. 79, 174506, 2009, doi: https://doi.org/10.1103/PhysRevB.79.174506
- G. Buscaglia, C. Bolech, and C. Lopez, Connectivity and Superconductivity. Heidelberg: Springer, 2000, doi: https://doi.org/10.1007/3-540-44532-3
- P. G. de Gennes, Superconductivity in Metals and Alloys. Boca Raton: CRC Press, 1989, doi: https://doi.org/10.1201/9780429497032
- J. S. Leon. M. R. Joya and J. Barba-Ortega, “Kagome–Honeycomb structure produced using a wave laser in a conventional superconductor,” Optik: International Journal for Light and Electron Optics, vol. 172, pp. 311-316, 2018, doi: https://doi.org/10.1016/j.ijleo.2018.07.036
- R. Lou, A. Fedorov, Q. Yin, A. Kuibarov, Z. Tu, C. Gong, E. F. Schwier, B. Buchner, H. Lei, and S. Borisenko, “Charge-Density-Wave-Induced Peak-Dip-Hump Structure and the Multiband Superconductivity in a Kagome Superconductor CsV3Sb5,” Phys. Rev. Lett, vol. 128, 2022, doi: https://doi.org/10.1103/PhysRevLett.128.036402
- S. J. Chapman, Q. Du, M. S. Gunzburger, Z. Angnew, “A model for variable thickness superconducting thin films,” Math. Phys., vol. 47, pp. 410-431, 1996, doi: https://doi.org/10.1007/BF00916647
- Q. Du. M. D. Gunzburger, J. S. Peterson, “Computational simulation of type-II superconductivity including pinning phenomena,” Phys. Rev. B, vol. 51, 16194, 1995, doi: https://doi.org/10.1103/PhysRevB.51.16194
- Q. Du, M.D. Gunzburger, “A model for superconducting thin films having variable thickness,” Physica D, vol. 69, pp. 215-231, 1993, doi: https://doi.org/10.1016/0167-2789(93)90089-J
- S. Chaudhar, Shama, J. Singh, A. Consiglio, D. Di Sante, R. Thomale, Y. Singh, “Role of electronic correlations in the kagome-lattice superconductor LaRh3B2,” Phys. Rev. B, vol. 107, 085103, 2023, doi: https://doi.org/10.1103/PhysRevB.107.085103
- G. J. Kimmel, A. Glatz, V. M. Vinokur, I. A. Sadovskyy, “Edge effect pinning in mesoscopic superconducting strips with non-uniform distribution of defects,” Sci. Reports, vol. 9, 2019, doi: https://doi.org/10.1038/s41598-018-36285-4
- J. Carlstrom, E. Babaev, M. Speight, “Type-1.5 superconductivity in multiband systems: Effects of interband couplings,” Phys. Rev. B, vol 83, 174509 2011, doi: https://doi.org/10.1103/PhysRevB.83.174509