Vol. 23 No. 4 (2024): Revista UIS Ingenierías
Articles

Design and fabrication of a metamaterial with resonators to dissipate mechanical vibrations

Heller Guillermo Sánchez-Acevedo
Universidad Industrial de Santander
Andrés Velásquez-Vargas
Sielecom SAS
Juan Gómez-Castellanos
Sielecom SAS

Published 2024-11-22

Keywords

  • Metamaterial,
  • cellular architecture,
  • vibrations,
  • resonator,
  • transmissibility

How to Cite

Sánchez-Acevedo, H. G., Velásquez-Vargas , A. ., & Gómez-Castellanos , J. . (2024). Design and fabrication of a metamaterial with resonators to dissipate mechanical vibrations. Revista UIS Ingenierías, 23(4), 45–56. https://doi.org/10.18273/revuin.v23n4-2024004

Abstract

Mechanical vibrations have been a recurring problem in manufacturing industries, so, its control and isolation are a focus of much research. Metamaterials are a new concept about artificial materials with stunned properties. It means that the material’s cellular architecture is designed to improve its mechanical properties, including damping capability. This work proposes a novel metamaterial focus on improving its damping capability. Its cellular architecture is based on a structure to support load and resonators to dissipate vibration energy. The resonators are designed and studied around a specific range of frequencies by a numerical model. Physical models are fabricated by additive manufacture and tested to determine the transmissibility coefficient. The results of experimental tests are reported, and those demonstrate that the damping capability is enhanced by de metamaterial proposed.

Downloads

Download data is not yet available.

References

  1. H. T. Chen, A. J. Taylor, N. Yu, “A review of metasurfaces: Physics and applications,” Reports on Progress in Physics, vol. 79, no. 7, 2016, doi: https://doi.org/10.1088/0034-4885/79/7/076401
  2. J. Sun, L. Kang, R. Wang, L. Liu, L. Sun, and J. Zhou, “Low loss negative refraction metamaterial using a close arrangement of split-ring resonator arrays,” New Journal of Physics, vol. 12, Aug. 2010, doi: https://doi.org/10.1088/1367-2630/12/8/083020
  3. A. Ali, A. Mitra, and B. Aïssa, “Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices,” Nanomaterials, vol. 12, no. 6, 2022, doi: https://doi.org/10.3390/nano12061027
  4. L. Wu et al., “A brief review of dynamic mechanical metamaterials for mechanical energy manipulation,” Materials Today, vol. 44, pp. 168–193, 2021, doi: https://doi.org/10.1016/j.mattod.2020.10.006
  5. I. Hossain, M. Samsuzzaman, A. Hoque, M. H. Baharuddin, N. B. M. Sahar, and M. T. Islam, “Polarization insensitive broadband zero indexed nano-meta absorber for optical region applications,” Computers, Materials and Continua, vol. 71, no. 1, pp. 993–1009, 2022, doi: https://doi.org/10.32604/cmc.2022.021435
  6. D. Lavazec, G. Cumunel, D. Duhamel, and C. Soize, “Experimental evaluation and model of a nonlinear absorber for vibration attenuation,” Communications in Nonlinear Science and Numerical Simulation, vol. 69, pp. 386–397, 2019, doi: https://doi.org/10.1016/j.cnsns.2018.10.009
  7. S. A. Nooraldinvand, H. M. Sedighi, and A. Yaghootian, “A Novel Elastic Metamaterial with Multiple Resonators for Vibration Suppression,” Advances in Condensed Matter Physics, vol. 2021, 2021, doi: https://doi.org/10.1155/2021/3914210
  8. G. Hu, L. Tang, R. Das, S. Gao, and H. Liu, “Acoustic metamaterials with coupled local resonators for broadband vibration suppression,” AIP Advances, vol. 7, no. 2, 2017, doi: https://doi.org/10.1063/1.4977559
  9. Y. J. Yoo et al., “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Scientific Reports, vol. 5, Sep. 2015, doi: https://doi.org/10.1038/srep14018
  10. N. S. Gao, X. Y. Guo, B. Z. Cheng, Y. N. Zhang, Z. Y. Wei, and H. Hou, “Elastic wave modulation in hollow metamaterial beam with acoustic black hole,” IEEE Access, vol. 7, pp. 124141–124146, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2938250
  11. Y. Y. Chen, M. v. Barnhart, J. K. Chen, G. K. Hu, C. T. Sun, G. L. Huang, “Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale,” Composite Structures, vol. 136, pp. 358–371, 2016, doi: https://doi.org/10.1016/j.compstruct.2015.09.048
  12. Y. Li, S. Cao, Y. Shen, and Y. Meng, “Phononic band-gaps of Hoberman spherical metamaterials in low frequencies,” Materials and Design, vol. 181, 2019, doi: https://doi.org/10.1016/j.matdes.2019.107935
  13. D. Roca, M. I. Hussein, “Broadband and Intense Sound Transmission Loss by a Coupled-Resonance Acoustic Metamaterial,” Physical Review Applied, vol. 16, no. 4, 2021, doi: https://doi.org/10.1103/PhysRevApplied.16.054018
  14. W. Wei, D. Chronopoulos, and H. Meng, “Broadband vibration attenuation achieved by 2d elasto-acoustic metamaterial plates with rainbow stepped resonators,” Materials, vol. 14, no. 17, 2021, doi: https://doi.org/10.3390/ma14174759
  15. C. Comi and L. Driemeier, “Wave propagation in cellular locally resonant metamaterials,” Latin American Journal of Solids and Structures, vol. 15, no. 4, May 2018, doi: https://doi.org/10.1590/1679-78254327
  16. H. Meng, D. Chronopoulos, A. T. Fabro, W. Elmadih, and I. Maskery, “Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation,” Journal of Sound and Vibration, vol. 465, 2020, doi: https://doi.org/10.1016/j.jsv.2019.115005
  17. A. Nateghi, L. Sangiuliano, C. Claeys, E. Deckers, B. Pluymers, and W. Desmet, “Vibration attenuation in pipes: Design and experimental validation of a resonant metamaterial solution,” in COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2017, vol. 2, pp. 4778–4795. doi: https://doi.org/10.7712/120117.5761.17379
  18. P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Physical Review Letters, vol. 113, no. 1, 2014, doi: https://doi.org/10.1103/PhysRevLett.113.014301
  19. H. Meng, D. Chronopoulos, A. T. Fabro, I. Maskery, and Y. Chen, “Optimal design of rainbow elastic metamaterials,” International Journal of Mechanical Sciences, vol. 165, 2020, doi: https://doi.org/10.1016/j.ijmecsci.2019.105185
  20. N. Kukreja and P. Singhal, “Design and verify a natural frequency using ANSYS software,” in Materials Today: Proceedings, 2021, vol. 45, pp. 3255–3258. doi: https://doi.org/10.1016/j.matpr.2020.12.386
  21. W. Wei, F. Peng, Y. Li, B. Chen, Y. Xu, and Y. Wei, “Optimization design of extrusion roller of rp1814 roller press based on ansys workbench,” Applied Sciences, vol. 11, no. 20, Oct. 2021, doi: https://doi.org/10.3390/app11209584
  22. Y. Tang, Y. Yu, J. Shi, and S. Zhang, “Modal and harmonic response analysis of key components of robotic arm based on ANSYS,” in Vibroengineering Procedia, vol. 12, pp. 109–114, 2017, doi: https://doi.org/10.21595/vp.2017.18703
  23. J. D. Echeverry, C. Guarnizo Lemus, and Á. Á. Orozco, “Analisis De La Densidad Espectral De Potencia En Registros” Scientia et Technica, vol. 3, no. 35, 2007.
  24. E. García, P. J. Núñez, J. M. Chacón, M. A. Caminero, and S. Kamarthi, “Comparative study of geometric properties of unreinforced PLA and PLA-Graphene composite materials applied to additive manufacturing using FFF technology,” Polymer Testing, vol. 91, 2020, doi: https://doi.org/10.1016/j.polymertesting.2020.106860
  25. V. S. Vakharia, L. Kuentz, A. Salem, M. C. Halbig, J. A. Salem, and M. Singh, “Additive manufacturing and characterization of metal particulate reinforced polylactic acid (Pla) polymer composites,” Polymers, vol. 13, no. 20, 2021, doi: https://doi.org/10.3390/polym13203545
  26. P. L. Ringegni, A. Martínez, and D. P. Revisión, “Vibraciones Transmisibilidad Mecánica Y Mecanismos”, 2018. [Online]. Available: file:///D:/Downloads/Apunte%20-%20TRANSMISIBILIDAD%202024.pdf
  27. N. M. M. Maia, R. A. B. Almeida, A. P. V. Urgueira, R. P. C. Sampaio, “Damage detection and quantification using transmissibility,” Mechanical Systems and Signal Processing, vol. 25, no. 7, pp. 2475–2483, 2011, doi: https://doi.org/10.1016/j.ymssp.2011.04.002