Methodology for the automatic generation of error rules and adaptive adjustment of functions of pertenence through a network network architecture netfuz 1.0
Published 2006-11-21
Keywords
- Artificial Neuronal Network,
- Fuzzy Inference Systems,
- Fuzzy Logic,
- Membership Functions,
- Fuzzy-Neural Systems
- COBOR 2.0 ...More
How to Cite
Abstract
In the generation of the Fuzzy Inference Systems, the primordial task is the extraction and the tuning of the memberships functions and the fuzzy rules. However, when using the traditional methods to carry out this task, the obtained results are not the prospective ones and in most of cases serious inconveniences are presented. This article presents a methodological proposal base in Artificial Neural Networks that allows extracting the fuzzy rules and the parameters of the functions of membership of a Fuzzy Inference System type Sugeno automatically, leaving of a group of data input-output. The development of a software is contemplated that will facilitate the application in the control of processes, the prediction and the estimate of parameters.
Downloads
References
JANGlS. R., "ANFIS: Adaptive Network Based Fuzzy Inference System, "IEEE Transon SMC, 23 (3), 665- 685, 1993.
NOZAKIK., ISHIBUCHIH., and TANAKAH., "A simple but powerful heuristic method for generation fuzzy rules from numerical data, "Fuzzy Sets Sys!., vol. 86, pp. 251- 270, 1997.
Math Works, MATLAB Fuzzy Logic Toolbox, the Math Worksluc., 1997.
LINKENSD. A. and NYONGESAH. O., "Learuing systems inintelligent control: On appraisalof fuzzy, neural and genetica lgorithm control appIications, "in Proc. Inst. Elec!. Eng. Control Theory Applications, vol. 143, 1996, pp. 367-386.
PEÑA C., Ponencia Coevolutionary Fuzzy Modeling, III Congreso Internacional de Inteligencia Computacional, Universidad del Sinú Colombia, Agosto 10 al 12 de 2005.
ZADEHL., "Fuzzy and sets" fnf, control, vol. 8, pp 338-353, 1965.
HABERR., Introducción al control borroso, ler seminario internacional sobre control inteligente de procesos, Medellin Colombia, Marzo 6al lO de 1995.
PEÑA c., Coevolutionary Fuzzy Modeling, PhD thesis, École Polytechnique Fédérale De Lausanne, Switzerland, 2002.
MANDAMIE. H., "Applications of fuzzy logicto approximate reasoning using linguistic Systems". IEEE Trans. On Systems, Man, and Cybemetics, 26 (12), pp. 1182- 1191, 1977.
TAKAGIT., and SUGENOM., "Fuzzy Identification of System and its Application to Modelling and Control", IEEE Transon SMC, 15(1), 116- 132, 1985.
WERBOSP., beyond regression: New tools for prediction and analysis in the behavior alsciences. PhD thesis, Harvard University, 1974.
JANGlS. R., Fuzzy modeling using generalized neural networks and Kahnan filter algoritbrn. In Proc. bof the Ninth National Conference on Artificial Intelligence (AAAI- 91), pp. 762- 767, July1991.
GOODWING. C. and K. SINS., Adaptive filtering prediction and control. Prentice-Hall, Engle wood Cliffs, N.l, 1984.
L JUNGL., System identification: theory for the user. Prentice- Hall, Englewood Cliffs, NJ., 1987.
STROBACHP., Linear prediction tbeory: a matbematical basis for adaptive systems. Springer- Verlag, 1990.
KOSKOB., Nemal Netsy Fuzzy System, prentice Hall, 1992.