Vol. 5 No. 1 (2006): Revista UIS Ingenierías
Articles

Application of mixing of distributions to the location of failures in distribution systems of electrical energy

Jorge Andrés Cormane Angarita
Universidad Industrial de Santander
Bio
Hernann Raúl Vargas Torres
Universidad Industrial de Santander
Bio
Gabriel Ordoñez Plata
Universidad Industrial de Santander
Bio

Published 2006-05-23

Keywords

  • Fault Location,
  • power quality,
  • statistical models,
  • classification,
  • mixture model,
  • multivariate analysis
  • ...More
    Less

How to Cite

Cormane Angarita, J. A., Vargas Torres, H. R., & Ordoñez Plata, G. (2006). Application of mixing of distributions to the location of failures in distribution systems of electrical energy. Revista UIS Ingenierías, 5(1), 49–57. Retrieved from https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/1766

Abstract

The enhancement of power distribution system reliability requires a great investment but not all the utilities are in a position to assume it. Therefore, any strategy that allows the improvement of reliability should be reflected directly in the decrease of the duration and frequency of interruptions. In this paper an alternative solution to the problems of continuity associated to fault location is presented. A methodology of statistical nature is proposed using finite mixture. With this approach a statistical model is obtained from the extraction of characteristic patterns of the signals registered by measurement equipments, along with the parameters and own topology of the network during the event. The purpose of this methodology is to offer an economic alternative of easy implementation for the development of strategies oriented to improve the reliability from the decrease in the times of attention and recovery of the system.

Downloads

Download data is not yet available.

References

Comisión de regulación de energía y Gas CREG, Resoluciones CREG070 de 1998, CREG 096 de 2000, CREG 084 de 2002, CREG 084 de 2002.

J. Jaimes, J. Duarte, G. Ordóñez, G. Canillo, P. Gaona, li La calidad de la energía eléctrica en el sector eléctIico colombiano: utopíao realidad ll, II Congreso Internacional de la Región Andina. Andes con IEEE, Colombia, 2004.

1. Cormane, V. Barrera, G. Ordóñez, "Predicción de comentes armónicas en ventanas de carga residenciales mediante modelos neuronales artificiales". J I Congreso Internacional de la Región Andina, Andes con IEEE, Colombia, 2004.

G. Canillo, G. Ordóñez, "Calidad del Suministro de Energía Eléctrica (power Quality) "ALURE Program-CREG Project. Tutorial Course, Colombia- 2002.

J M. Bollen, Understanding power quality problems: voltages sags and interruptions, New York, IEEE Press, 2000.

A. Peñuela, J. Pacheco, G. Ordóñez, J. Duarte, II Propuesta metodología para la valoración de costos en empresas manufactureras, debidos a una inadecuada continuidad del suministro de la energía eléctrical1, tesis de grado, Universidad Industrial de Santander, Bucaramanga., Colombia, 2003.

J. Jaimes, Tl Conceptualización técnica del servicio de reserva operativa U, M. S. thesis, Universidad Industrial de Santander, Bucaramanga., Colombia, 2003.

R. Das, II Determining the Locations of Faults in Distribution Systems", Ph. Ddissertation, Saskatchewan Univ., Canada, 1998.

J. Zhu, D. Lubkeman, A. Girgis, "Automated fault location and diagnosis on electric power distribution feeders", IEEE Trans. Power delivery, Vol. 12, pp. 801-809, Apr, 1997.

A. Girgis, C. Fallan, D. Lubkeman, "A foult location technique for rural distribution feeders", IEEE Trans. Industry applications, Vol. 29, pp. 1170-1175, Dec, 1993.

Comisión de Regulación de Energía y Gas CREG, Resolución CREG 025 de 2005.

J. Mora, J. Colomer, "Voltage Sag Characterization and Classification for Diagnosis in Electric Power Quality Domaio11, Department of Electronics, Computer Science and Automatic Control, Research report, Girana España, 2003

D. Peña, Análisis de datos multivariantes. Madrid, McGraw-Hil1, 2oo2.

Y. Wang, L. Luo, M. Freed man and S. Kung, "Probabilistic principal component sub spaces: A hierarchical fmitemixture model for data visualization 11, IEEE Trans. Neural Networks, Vol II, pp. 625-636, May, 2000.

L. Díaz, Estadística multivariada: inferencia y métodos. Bogota D. C, Universidad Nacional de Colombia, 2002.

J. Hair, R. Anderson, R. Tatham, W. Black, Análisis multivariante. Madrid. Prentice Hall, 1999.

Y. Wang, S. Lin, H. Li, and S. Kung, "Data mapping by probabilistic modular networks and information the oretic criteria", IEEE Trans. Signal processing, Vol. 46, pp. 3378-3397, Dec, 1998.

M. Jordan and R. Jacobs, II Hierarchical mixture of experts and the EMalgorithm", IEEE Trans. Neural Computat, Vol 6, pp. 181-214, 1994.

W. Martínez, and A Martínez Computational statistics Handbook whit Mat Lab. New York, Chapman & Hall, 20 m.

E. Dalla, Jonson, Métodos multivariados aplicados al análisis de datos, México, Thompson, 2000.

G. Mclacblan and D. Peel, Finite mixture models, Canada, Wiley, 2000.

M. Figueiredo, II Unsupervised Learning of Finite Mixture Models ll, IEEE Trans. Pattern analysis and Machine intelligence, Vol. 24, Mar, 2002.

J. B. Dagenhart, "The 40- Ground- Fault Phenomenon" IEEE Trans. on Industry Applications, vol. 36, no. 1, pp 30-32, 2000

S. Lee, M. Choi, S. Kang, B. Jin, D. Lee, B. Ahn, N. Yoon, H. Kim, S. Wee. II An intelligent and efficient fault location and diagnosis écheme for radial distribution systems", IEEE Trans. Power Delivery, Vol. 19, Apr, pp. 524-532, 2004.

G. Carrillo, J. Román, J. Rivier, S. Ramírez II Metodología coste-beneficio aplicada a la instalación de equipos de localización y seccionamiento del tramo con avería en redes de distribución", JOlnadashispano-lusas de ingeniería eléctrica, Tomo 3, Barcelona, 1993.