Vol. 11 No. 1 (2012): Revista UIS Ingenierías
Articles

Preliminary modeling of an optoelectronic encoder for the transfer of data on the orbital light moment of light

Carlos Fernando Díaz-Meza
Universidad Industrial de Santander
Bio
Cristian Hernando Acevedo-Cáceres
Universidad Industrial de Santander
Bio
Yezid Torres-Moreno
Universidad Industrial de Santander
Bio
Jaime Guillermo Barrero-Pérez
Universidad Industrial de Santander
Bio

Published 2012-06-15

Keywords

  • Orbital angular momentum of light,
  • encode data,
  • Hermitte-Gauss modes,
  • Laguerre-Gauss modes,
  • topological charge

How to Cite

Díaz-Meza, C. F., Acevedo-Cáceres, C. H., Torres-Moreno, Y., & Barrero-Pérez, J. G. (2012). Preliminary modeling of an optoelectronic encoder for the transfer of data on the orbital light moment of light. Revista UIS Ingenierías, 11(1), 35–43. Retrieved from https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/35-43

Abstract

This  paper  presents  a  preliminary  model  for  optoelectronic  encoder  that  use  the  property  of  orbital  angular momentum of light to data transfer. The implementation of this technology provides some advantages in quantum cryptography, increasing bandwidth even storing arrangements.This architecture is showed in blocks diagram and a brief mathematical theory to explain the encoder is presented, it uses the wave’s paraxial approximation when propagates out of resonant cavities like Hermite-Gauss or Laguerre-Gauss. Three possible techniques allow the generation of the physical quantity of interest, topological charge of the beam, and the subsequent insertion of the data to transmit, selecting the most versatile and showing the main characteristics of both, the incident beam and the beam emerging  from the encoder.

Downloads

Download data is not yet available.

References

  1. L. Allen, M. Beijersbergen, R. Spreeuw and J.P Woerdman, “Orbital angular momentum of light and the transformation of Laguerre Gaussian laser modes”, Physical Review A, Vol.45, No. 11, 1992, pp. 8185–8189.
  2. A.T. O´Neil, I. MacVicar, L. Allen and M.J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum”, Physical Review Letters, Vol.88, No. 5, 2002, pp. 053601_1– 053601_4.
  3. J. W. R. Tabosa and D. V. Petrov, ”Optical pumping of orbital angular momentum of light in cold cesium atoms”, Physical Review Letters, Vol. 83, No. 24, 1999, pp.4967-4970.
  4. A. S. Tanenbaum, “Redes de computadoras”, Cuarta edición, Editorial Pearson Prentice Hall, México, 2003, 893 pp.
  5. O. Bouchet , H. Sizum, C. Boisrobert. F. de Fornel and P. Favennec, “Free space optics, propagation and communication”, Series Editor ISTE, London, 2006, 219 pp.
  6. B. Hitz, J.J Ewing, J. Hecht, “Introduction to Laser technology”, Third Edition, IEEE PRESS, New York, 2001, 302 pp.
  7. J. D. Jackson, “Classical Electrodynamics”, Third Edition, John Wiley & Sons Inc., New York, 1998, 808 pp.
  8. W. H. Hayt Jr, J. A. Buck, “Teoría electromagnética”, Séptima edición, Editorial McGraw Hill, México, 2006, 541 pp.
  9. M. C. España, “Comunicaciones ópticas, Conceptos esenciales y resolución de ejercicios”, Única edición, Editorial Díaz de Santos, Madrid, 2005, 397 pp.
  10. M. Moncada, C. Ramírez, “Transformación de un modo HG en un modo LG vía conversores astigmáticos”, Revista Colombiana de Física, Vol. 38, No. 1, 2006, pp.129-132.
  11. G. Rodriguez, F. Sanchez, S. Martinez, “Ingeniería de haces láser, Propiedades, manipulación y aplicaciones”, Revista ingenierías, Vol. 12, No. 44, 2009, pp.16-23.
  12. K. Contreras, G. Baldwin, F. De Zela, “Observación de nuevos patrones modales en experimentos con modos láser HermiteGaussianos y Laguerre-Gaussianos”, Mosaico científico, Vol. 2, No. 2, 2005, pp.47-51.
  13. G. Arfken, “Mathematical methods for physicists”, Third Edition, Academic Press Inc, Miami, 1985, 985 pp.
  14. H. Kogelnik, T. Li, “Laser beams and resonators”, Proceedings IEEE, Vol 54, No. 10, 1966, pp.1312- 1329.
  15. A. Siegman, “Lasers”, Unique Edition, University Science Books, California, 1986, 1283 pp.
  16. G. Smith, T. A. King, D. Wilkins, “Optics and photonics”, Second edition, John Wiley & Sons Ltd, Manchester, 2007, 507 pp.
  17. J. Courtial and M.J. Padgett, “Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes”, Optics Communications, Vol.159, No.1-3, 1999, pp.13-18.
  18. M. Beijersbergen, L. Allen, H.E.L.O. van der Veen and J.P Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum”, Optics Communications, Vol. 96, No.1-3, 1993, pp.123-132.
  19. E. Santamato, “Photon orbital angular momentum: Problems and perspectives” Fortschr. Phys. Vol. 52, No 11-12, 2004’ pp.1141-1153.
  20. W. Beijersbergen, R.P.C Coerwinkel, M. Kristensen and J.P Woerdman, “Helical wavefront laser beams produced with a spiral phaseplate”, Optics Communications, Vol. 112, 1994, No. 5-6, pp.321-327.
  21. L. Janicijevic, S. Topuzoski, “Fresnel and Franhoufer diffraction of a Gaussian laser beam by fork-shaped gratings”, JOSA A, Vol 25, No 11, 2008, pp.2659-2669.
  22. N. R. Heckenberg, R McDuff, C. P. Smith, H. Rubinsztein-Dunlop and M. J. Wegner, “Laser beams with phase singularities”, Optics and Quantum electronics, Vol. 24, No. 9, 1992, pp.S951-S962.
  23. J.W. Goodman, “Introduction to Fourier Optics”, second edition, Mc Graw Hill, second edition, New York, 1996, 441 pp.
  24. A. Jain, “Development of an orbital angular momentum sorter for high-speed data transfer”, Intel Talent Science search – Physics report, Herricks High School and Laser Teaching center, Stony Brook University, Stony Brook, New York, 2005.
  25. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, S.Barnett and Sonja Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum”, Optics Express, Vol.12, No. 22, 2004, pp.5448-5456.
  26. L. Allen, M. Padgett and M. Babiker, Chapter IV: The orbital angular momentum of light, Progress in Optics XXXIX, Elsevier Science B. V., Amsterdam, Netherlands, 1999, 383pp.
  27. R.Torres, P.Pellat-Finet and Y.Torres, “Fractional convolution, fractional correlation and their translation invariance properties”, Signal Processing, Vol.90, No.6, 2010, pp.1976-1984.