Vol. 14 No. 2 (2015): Revista UIS Ingenierías
Articles

Impact of linear and nonlinear effects in the requirements of the transmitter linewidth for WDM-DPSK systems

Jesús Alvarez Guerrero
Universidad Pontificia Bolivariana
Bio
Ferney Orlando Amaya Fernandez
Universidad Pontificia Bolivariana
Bio

Published 2015-06-22

Keywords

  • Linewidth,
  • DPSK,
  • Linear and nonlinear effects,
  • WDM-PON

How to Cite

Alvarez Guerrero, J., & Amaya Fernandez, F. O. (2015). Impact of linear and nonlinear effects in the requirements of the transmitter linewidth for WDM-DPSK systems. Revista UIS Ingenierías, 14(2), 35–45. https://doi.org/10.18273/revuin.v14n2-2015004

Abstract

In this paper we analyze the impact in the requirements of the linewidth of the laser, due to the linear and non-linear effects introduced by the optical fiber, in a WDM-PON transmission system using DPSK modulation format. We measured the BER for different data bit rates, transmitted power and dispersion coefficient of the optical fiber. The study was performed using simulations in the computational tool OPTSIM. We found that if the data bit rate is increased, it is possible to use optical sources with higher linewidth using DPSK modulation format, decreasing the cost of the transmitter. Additionally, we proved that the non-linear effects mostly affect the transmission systems where optical fibers with dispersion coefficients near zero are used.

Downloads

Download data is not yet available.

References

  1. Agrawal, G. Nonlinear Fiber Optics. Elsevier, 2001. Ahsan, S.; Lee, M.; N., S.; Asif, S. Migration to the next generation optical access networks using hybrid wdm/tdmpon. Journal of Networks, 6, 2011. URL: http://ojs.academypublisher.com/index.php/jnw/article/view/06011825.
  2. Álvarez, J.; Medina, B.; Serpa, C.; Guerrero, N. Compensación digital de la dispersión cromática en sistemas de comunicaciones ópticas basados en algoritmos cma y mmse. En Memorias del Xvi Simposio de Tratamiento de Señales, Imágenes y Visión Artificial U Stsiva, 2011.
  3. Belleville, M.; Van Hoof, C.; Ionesco, A.; Lawreins, R.; Pelka, J.; Sangiorgi, E.; Wolny, M. Semiconductor Technologies for Smart Cities. Technical Report CATRENE, Cluster for Application and Technology Research in Europe on NanoElectronics, 2014.
  4. Chenyang, H.;Wei, H. Simulation and comparison of advanced modulation formats for wavelength reuse in highs-peed wdm-pon system. Journal of Physics: Conference Series, 276, 012059, 2011. URL: http://stacks.iop.org/1742-6596/276/i=1/a=012059.
  5. Chow, C.; Yeh, C. Using downstream dpsk and upstream wavelength-shifted ask for rayleigh backscattering mitigation in tdmpon to wdm-pon migration scheme. Photonics Journal, IEEE, 5, 7900407-7900407, 2013. doi:10.1109/JPHOT.2013.2247588.
  6. Emsia, A.; Le, T.; Von Lerber, T.; Briggmann, D.; Kuppers, F. Wdm-pon upstream budget extension for 4x10 gbit/s dpsk directly modulated lasers. (pp. 34-35), 2012. doi:10.1109/IPCon.2012.6358475.
  7. Han, W.; Zhang, M.; Liu, M.; Chen, X. 10gbit/s fullduplex bidirectional rsoa-based wdm pon using machzehnder interferometer and forward error correction. En Communications and Photonics Conference (ACP), 2012 Asia (pp. 1-3), 2012.
  8. Huawei Next-Generation PON Evolution. Technical Report Huawei Technologies Co, 2010.
  9. Hussain, A.; Xiangjun, X.; Hussain, A.; Latif, A.; Munir, A.; Khan, Y.; Idrees, M. A symmetric 10gbps x lambda colorless wdm-pon. Journal of Computational Information Systems, 9, 881-888, 2013.
  10. Hussain, A.; Yu, C.; Xin, X.; Yuan, Q.; Liu, B.; Hussain, A.; Latif, A.; Munir, A.; Khan, Y.; Afridi, I. A novel duplex wdm-pon with dpsk modulated downstream and remodulation of the downlink signal for ook upstream. Optoelectronics Letters, 8, 134-137, 2012. URL: http://dx.doi.org/10.1007/s11801-012-1105-4.
  11. Kaminow, I.; Li, T.; Willner, A. Optical Fiber Telecommunications VIB: Systems and Networks. Elsevier, 2008.
  12. Kumar, A.; Janyani, V. Analysis of Ook Upstream Signal Remodulation for Different Data Rates in WDM-PON Network. International Journal of Signal Processing Systems, 3, 134-138, 2015.
  13. Latal, J.; Vitasek, J.; Koudelka, P.; Siska, P.; Poboril, R.; Hajek, L.; Vanderka, A.; Vasinek, V. Simulation of modulation formats for optical access network based on wdm-pon. En Transparent Optical Networks (ICTON), 2014 16th International Conference on (pp. 1-7), 2014. doi:10.1109/ICTON.2014.6876473.
  14. Lin, R. Next generation pon in emerging networks. En Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on (pp. 1-3), 2008. doi:10.1109/OFC.2008.4528701.
  15. Ling, C.; Dahlfort, S.; Hood, D. Evolution of pon: 10gpon and wdm-pon. En communications and Photonics Conference and Exhibition (ACP), 2010 Asia (pp. 709-711), 2010. doi:10.1109/ACP.2010.5682701.
  16. Nai, W.; Dong, D. A cost Effective Multi-Services WDM-PON Employing DPSK FSK Orthogonally Modulated Downstream and Ook Remodulated Upstream. En Wireless Mobile and Computing (CCWMC 2011), IET International Communication Conference on (pp. 232-236), 2011. doi:10.1049/cp.2011.0881.
  17. Pellicer, S.; Santa, G.; Bleda, A.; Maestre, R.; Jara, A.; Gómez-Skarmeta, A. A global perspective of smart cities: A survey. En Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013 Seventh International Conference on (pp. 439-444), 2013. doi:10.1109/IMIS.2013.79.
  18. Reis, J.; Drummond, M.; Teixeira, A.; Nogueira, R.; Monteiro, P.; Shinada, S.;Wada, N.; Belen, G. Experimental Demonstration of a Nonlinear Effects Crosstalk Minimization Algorithm. En Optical Fiber Communication (OFC), Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC) (pp. 1-3), 2010.
  19. Seimetz, M. High-Order Modulation for Optical Fiber Transmission. Springer Berlin Heidelberg, 2009.
  20. Wong, E. Next-Generation Broadband Access Networks and Technologies. Lightwave Technology, Journal, 30, 597-608, 2012. doi:10.1109/JLT.2011.2177960.
  21. Zhao, J.; Chen, L.; Chan, C. A novel re-modulation scheme to achieve colorless high-speed wdm-pon with enhanced tolerance to chromatic dispersion and re-modulation misalignment. En Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. Conference on (pp. 1-3), 2007. doi:10.1109/OFC.2007.4348855.
  22. Zhu, J.; Pachicke, S.; Lawin, M.;Mayne, S.;Wonfor, A.; Penty, R.; Cush, R.; Turner, R.; Firth, P.;Wale, M.; White, I.; Elbers, J. First Demonstration of a WDM-PON System Using Full C-band Tunable SFP+Transceiver Modules [invited]. Optical Communications and etworking, IEEE/OSA Journal of , 7, A28-A36, 2015. doi:10.1364/JOCN.7.000A28.