Vol. 13 No. 2 (2014): Revista UIS Ingenierías
Articles

Solar and wind potential assessment in the central campus of Universidad Industrial de Santander and Bucaramanga city, Colombia

Pedro Pablo Vergara-Barrios
Universidad Industrial de Santander
Bio
Juan Manuel Rey-López
Universidad Industrial de Santander
Bio
Germán Alfonso Osma-Pinto
Universidad Industrial de Santander
Bio
Gabriel Ordóñez-Plata
Universidad Industrial de Santander
Bio

Published 2014-06-15

Keywords

  • Energy potential assessment,
  • solar energy,
  • wind energy,
  • Bucaramanga

How to Cite

Vergara-Barrios, P. P., Rey-López, J. M., Osma-Pinto, G. A., & Ordóñez-Plata, G. (2014). Solar and wind potential assessment in the central campus of Universidad Industrial de Santander and Bucaramanga city, Colombia. Revista UIS Ingenierías, 13(2), 49–57. Retrieved from https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/49-57

Abstract

In this paper, a statistical study of solar and wind potential is presented, in order to estimate the characteristic parameters to assess the energy resource in the central campus of Universidad Industrial de Santander (UIS) and Bucaramanga, Colombia. To do this, solar radiation, ambient temperature and wind speed, were hourly measured in four strategic zones of the city, for the years 2010, 2011 and 2012. Finally, the energy feasibility for the installation of photovoltaic and wind power generation systems and an analysis of the results are presented.

Downloads

Download data is not yet available.

References

  1. AHMED,A. S. Wind energy as a potential generation source at Ras Benas, Egypt. Renewable and Sustainable Energy Reviews, 14(8), 2167–2173. 2010. doi:10.1016/j.rser.2010.03.006
  2. AKDAG, S. A; DINLER, A. A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761– 1766. 2009. doi:10.1016/j.enconman.2009.03.020
  3. DAUT, I; IRWANTO, M; IRWAN, Y; M., GOMESH, N; AHMAD, N. S. Potential of Solar Radiation and Wind Speed for Photovoltaic and Wind Power Hybrid Generation in Perlis , Northern Malaysia, (June), 6–7. 2011.
  4. DUAN, W; CHEN, J; HENGCHANG, F. Comparative Research on Methods of Calculating Weibull Distribution Parameters of Wind Speed. In 2011 AsiaPacific Power and Energy Engineering Conference (pp. 1–4). 2011. IEEE. doi:10.1109/APPEEC.2011.5748608
  5. EL ALIMI, S; MAATALLAH, T; DAHMOUNI, A. W; BEN NASRALLAH, S. Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia. Renewable and Sustainable Energy Reviews, 16(8), 5466–5478. 2012. doi:10.1016/j.rser.2012.05.004
  6. ELLIOTT, D. et al., Wind energy resource atlas of the United States. 1987.
  7. IGRAHIM, S. et al., Linear Regression Model in Estimating Solar Radiation in Perlis. Energy Procedia, 18, 1402–1412. 2012. doi:10.1016/j. egypro.2012.05.156
  8. ILINCA, A. et al., Wind potential assessment of Quebec Province. Renewable Energy, 28(12), 1881–1897. 2003. doi:10.1016/S0960-1481(03)00072-7
  9. KUMARASWAMY, B. G; KESHAVAN, B. K; JANGAMSHETTI, S. H. A statistical analysis of wind speed data in west central part of Karnataka based on Weibull distribution function. In 2009 IEEE Electrical Power & Energy Conference (EPEC) (pp. 1–4). 2009. IEEE. doi:10.1109/EPEC.2009.5420878
  10. KUMARASWAMY, G; KESHAVAN, K.; RAVIKIRAN, T. Analysis of seasonal wind speed and wind power density distribution in Aimangala wind form at Chitradurga Karnataka using two parameter weibull distribution function. In 2011 IEEE Power and Energy Society General Meeting (pp. 1–4). 2011. IEEE. doi:10.1109/PES.2011.6039587
  11. LAZAR, R., & EDER, J. Estudio sobre el clima urbano en Bucaramanga. Universidad Industrial de Santander, UIS. 2001.
  12. OSMA, A. Proyecto de investigación de maestría: Uso racional de la energía a partir del diseño de aplicaciones sostenibles en el Edificio Eléctrica II de la Universidad Industrial de Santander. 2011. Universidad Industrial de Santander. Dirigido por el Dr. Gabriel Ordóñez Plata.
  13. OSMA, A; ORDÓÑEZ, G. Design of a photovoltaicwind power generation system with grid connection and two micro-grids. In 2012 IEEE International Symposium on Alternative Energies and Energy Quality (SIFAE) (pp. 1–6). 2012. Barranquilla: IEEE. doi:10.1109/SIFAE.2012.6478886
  14. OUAMMI, A. Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renewable and Sustainable Energy Reviews, 14(7), 1959–1968. 2010. doi:10.1016/j.rser.2010.04.015
  15. REY, J. Analysis of the Inclusion of Smart Grids Technology in the Colombian Electric Power System. In 2013 International Symposium on Power Quality, SICEL. 2013. Medellin, Colombia.
  16. RODRIGUEZ, H. Plan de desarrollo para la fuentes no convencionales de energía en Colombia Vol 3: Tecnología y Costos. 2010. Bogotá, Colombia.
  17. RODRIGUEZ, H. et al., Plan de desarrollo para las fuentes no convencionales de energía en Colombia Vol 2: Diagnosticos de las FNCE. 2010. Bogotá, Colombia.
  18. UCAR, A; BALO, F. Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renewable and Sustainable Energy Reviews, 14(7), 1901–1912. 2010. doi:10.1016/j.rser.2010.03.021
  19. UPME-IDEAM. Atlas de Radiación Solar de Colombia. Bogotá, Colombia, Colombia: Ministerio de Minas y Energia. Unidad de Planeación Minero Energetica (UPME) y Ministerio de Ambiente y Desarrollo Territorial- Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). 2005.
  20. ZHAO, M; LIU, Z; YU, M. Testing and analyzing of solar energy resource assessment in inner mongolia. In 2009 4th IEEE Conference on Industrial Electronics and Applications, 2009, (pp. 2177–2179). IEEE. doi:10.1109/ICIEA.2009.5138583