Vol. 15 No. 2 (2016): Revista UIS Ingenierías
Articles

Dynamic modelling of the Mitsubishi Movemaster RV-M1 serial manipulator using SolidWorks

Alex Barraza Cantillo
Ingeniero Mecánico Universidad del Atlántico
Bio
Juan Rúa Charris
Ingeniero Mecánico Universidad del Atlántico
Bio
José Sosa Rodríguez
Ingeniero Mecánico Universidad del Atlántico
Bio
James Díaz González
BMT Designers and Planners Inc. Arlington, USA
Bio
Eugenio Yime Rodríguez
Grupo GIMAT Ingeniería Mecatrónica Universidad Tecnológica de Pereira
Bio
Javier Roldán Mckinley
Grupo DIMER Ingeniería Mecánica Universidad del Atlántico
Bio
Portada RUI 15.2

Published 2016-06-15

Keywords

  • Dynamics,
  • movemaster RV-M1,
  • robotics,
  • solidWorks

How to Cite

Barraza Cantillo, A., Rúa Charris, J., Sosa Rodríguez, J., Díaz González, J., Yime Rodríguez, E., & Roldán Mckinley, J. (2016). Dynamic modelling of the Mitsubishi Movemaster RV-M1 serial manipulator using SolidWorks. Revista UIS Ingenierías, 15(2), 49–62. https://doi.org/10.18273/revuin.v15n2-2016004

Abstract

This paper presents how the mathematical model of the Mitsubishi RV-M1 robot dynamics is obtained from the application of the Lagrange-Euler energy principle. A SolidWorks CAD model of the robot was created, where the internal elements material and location were considered for each link. This detailed CAD model was used in the attainment of the centers of mass and the inertia matrixes of each link. The gravity compensation control law was simulated for the robot, and the mathematical dynamic model was used to calculate the control torques. The results obtained for the SolidWorksgenerated values were compared against those using dynamic properties in available literature. Satisfactory results were obtained in the workspace error by using an approach that is very detailed although non-experimental, supported with a software that is widely used in the Mechanical Engineering Programas of the Colombian universities

 

Downloads

Download data is not yet available.

References

  1. ADAMS MSC Software, Simulating Reality Delivering Certainty [web en línea] < http://www.mscsoftware.com/product/adams> [consulta: 4-9-2015].
  2. BONILLA, M.; PARRA, V. y RUIZ, F. Co-simulation of cooperative robots based on ADAMS, MATLAB and a haptic interface. Congreso anual de la Asociación de México de Control Automático, Ramos Arizpe, México, 6-8 de octubre de 2010.
  3. CEGARRA, J. Metodología de la investigación científica y tecnológica. Madrid: Ed. Díaz de Santos, 2004.
  4. CRAIG, J. Introduction to robotics: Mechanics and control. 2da ed. New York: Addison-Wesley-Longman, 1989.
  5. CRANE, C. and DUFFY, J. Kinematic analysis of robot manipulators. New York City: Ed. Cambridge, 1998.
  6. CRANE, C.; DUFFY, J. and CARNAHAN, T. A kinematic analysis of the space station remote manipulator system. Journal of Robotic Systems. 1991, vol. 8, num. 5, pp. 637-658.
  7. CRANE, C., DUFFY, J. and CARNAHAN, T. A kinematic analysis of the modified flight telerobotic servicer manipulator system. Journal of Robotic Systems. 1992, vol. 9, num. 3, pp. 461-480.
  8. DUFFY, J. and CRANE, C. A displacement analysis of the general spatial seven link, 7R mechanism. Mechanism and Machine Theory. 1980, vol. 15, pp. 153-169.
  9. DUFFY, J. and ROONEY, J. A foundation for a unified theory of analysis of spatial mechanisms. Journal of Engineering for Industry, Trans. ASME. 1975, vol. 97, num. 4, series B, pp. 1159-1164.
  10. HAMILTON, C. Using MATLAB to advance the robotics laboratory. Journal of Computer Applications in Engineering Education. 2007, vol. 15, num. 3, pp. 205-213.
  11. HERNÁNDEZ, R.; FERNÁNDEZ, C. y BAPTISTA, P. Metodología de la investigación. 5ta ed. Perú: Ed. McGraw Hill, 2010.
  12. JAZAR, R. Theory of applied Robotics: Kinematics, Dynamics and Controls. New York City: Ed. Springer, 2007.
  13. KELLY, R. y SANTIBAÑEZ, R. Control de Movimiento de robots manipuladores. Madrid: Prentice Hall, 2003.
  14. KUMAR, R.; KALRA, P. and PRAKASH, N. A virtual RV-M1 robot system. Journal of Robotics and Computer-Integrated Manufacturing. 2011, num. 27, pp. 994-100.
  15. Mitsubishi Electric Corporation. Industrial micro-robot system user manual, modelRV-M1. Naguya: Mitsubishi Corporation, 1992.
  16. ROLDÁN, J.; SOSA, J.; YIME, E. y DÍAZ, J. Cinemática inversa matricial del manipulador 5R Mitsubishi Movemaster RV-M1. Revista Épsilon. 2012, núm. 19, Julio-Diciembre, pp. 33-56.
  17. TAKEGAKI, M. and ARIMOTO, S. A new feedback method for dynamic control of manipulators. Trans. of ASME, Journal of Dynamic Systems, Measurement and Control. 1981, vol. 103, pp. 119-125.
  18. TSAI, L. Robots analysis: The mechanics of serial and parallel manipulators. New York City: Ed. Wiley Interscience, 1999.