Vol. 18 No. 1 (2019): Revista UIS Ingenierías
Articles

Energetic recovery and thermal analysis of the cooking process in the ceramic industry

Ana Carolina Medina-Jimenez
Universidade Federal do ABC
Julian Ernesto Jaramillo-Ibarra
Universidad Industrial de Santander

Published 2019-01-01

Keywords

  • heat transfer,
  • mathematical model,
  • downdraught beehive kiln,
  • coal combustion,
  • thermodynamics

How to Cite

Medina-Jimenez, A. C., & Jaramillo-Ibarra, J. E. (2019). Energetic recovery and thermal analysis of the cooking process in the ceramic industry. Revista UIS Ingenierías, 18(1), 81–98. https://doi.org/10.18273/revuin.v18n1-2019007

Abstract

Previous scientific research has not focused on downdraught beehive kilns, which are the most used in the Colombian brick (ceramic) industry. Hence, in the present paper, an analytical mathematical model is developed in order to simulate the exhaust gas behavior. To do so, gas combustion and heat and mass transfer to the products and the walls are modelled within the kiln. The obtained model is validated by experimental data. Finally, with the experimental data acquired in the discharge duct and chimney, a heat recovery system is proposed to make use of the residual energy.

 

Downloads

Download data is not yet available.

References

  1. RAMÍREZ, M; HUACÚZ, L; & TRÁPAGA, G. Mathematical modeling of pottery production in different industrial furnaces, Journal of materials engineering and performance, vol.17 no.5, 2008.
  2. MULLINGER, P; & JENKINS, B. Industrial and process furnaces: Principles, Design and Operation, Elsevier, 2008.
  3. MORAN, M; & SHAPIRO, H. N. Fundamentals of Engineering Thermodynamics, H. N., John Wiley and Sons, 2006.
  4. BAUKAL, C. E. Heat Transfer in Industrial Combustion, CRC Press, 2000.
  5. MILLS, A. F. Transferencia de calor. University of California, Los Angeles: McGraw-Hill, 1997.
  6. INCROPERA, F. P. Fundamentals of heat and mass transfer. USA: John Wiley & Sons, 2011.
  7. ASANO, K. Mass Transfer from fundamentals to modern industrial applications. WILEY-VCH. 2006
  8. ROHSENOW, W. M. Handbook of Heat transfer. Massachusetts Institute of Technology: McGraw-Hill, 1998. p 4.34.
  9. MOTT, R. L. Mecánica de Fluidos. México, DF: Pearson Educación, 2006. p 242.
  10. CRANE. Manual: Flujo de fluidos en válvulas, accesorios y tuberías. Universidad de Guadalajara: McGraw-Hill. Pags 16-42.
  11. MEZQUITA, A. et al. Optimización energética en la fabricación de baldosas cerámicas mediante el uso de aceite térmico, Boletín de la Sociedad española de Cerámica y Vidrio, vol. 51 no.4, 2012.
  12. SHAH, R. K; & SEKULIC, D. P. Fundamentals of heat exchangers design. New Jersey: John Wiley & Sons, 2003.
  13. MILLS, A. Transferencia de calor. University of California, Los Angeles, McGraw-Hill, 1997.