Vol. 16 No. 2 (2017): UIS Engineering Journal
Articles

Regulation frequency improvements using the inertia increase of networked microgrids

Billy Vladimir Toro Tovar
Universidad Nacional de Colombia
Bio
Eduardo Mojica Nava
Universidad Nacional de Colombia
Sergio Rivera
Universidad Nacional de Colombia

Published 2017-05-30

Keywords

  • Microgrid,
  • droop control,
  • frequency,
  • etworked,
  • synchronous generator,
  • regulation
  • ...More
    Less

How to Cite

Toro Tovar, B. V., Mojica Nava, E., & Rivera, S. (2017). Regulation frequency improvements using the inertia increase of networked microgrids. Revista UIS Ingenierías, 16(2), 35–42. https://doi.org/10.18273/revuin.v16n2-2017003

Abstract

Droop control guarantee frequency regulation and power sharing among the inverters in an islanded microgrid, however, frequency deviations are introduced respect to reference values. When an aditional distributed generator base on inverters is connected to the microgrid, such deviations are reduced and the power capacity of the system is improved; same way happens when islanded microgrids are interconnected. Droop control has shown to be effective in inverter based microgrids, however, when one or more synchronous generators are directly connected to the microgrid the conditions of the controller change. To analaize what happen when islanded microgrids are interconected different cases are considered: first when both microgrid are based only in inverters and other case in which one microgrid has at least one synchronous generator. In this way, the simulation results show the regulation frequency improvements using the inertia increase of networked microgrids.

Downloads

Download data is not yet available.

References

  1. H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 18–28, 2010.
  2. R. H. Lasseter, "MicroGrids," 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, 2002, pp. 305-308 vol.1.
  3. R. H. Lasseter, “Smart distribution: Coupled microgrids,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1074–1082, 2011.
  4. S. Rivera, A. M. Farid and K. Youcef-Toumi, "A multi-agent system transient stability platform for resilient self-healing operation of multiple microgrids," ISGT 2014, Washington, DC, 2014, pp. 1-5.
  5. Rivera, S., Farid, A. M., & Youcef-Toumi, K, “A multi-agent system coordination approach for resilient self-healing operation of multiple microgrids,” Industrial Agents: Emerging Applications of Software Agents in Industry, 2014, pp. 1-20.
  6. A. R. Bergen, Power systems analysis. Pearson Education India, 2009.
  7. E. Mojica-Nava, N. Quijano, and A. Pavas, “Dynamic population games for hierarchical microgrid management,” in 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, 2013.
  8. J. Rocabert, A. Luna, F. Blaabjerg, and I. Paper, “Control of Power Converters in AC Microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734–4749, 2012.
  9. J. M. Guerrero, J. C. Vasquez, M. Savaghebi, J. D. Hoz, and H. Martín, “Hierarchical Control of Power Plants with Microgrid Operation,” Annual Conference on IEEE Industrial Electronics Society, pp. 3006–3011, 2010.
  10. F.A. Zúñiga-Cortés, E.F Caicedo-Bravo y D.M López-Santiago. “Gestión óptima de la potencia eléctrica en una microrred conectada, basada en el algoritmo genético para optimización multiobjetivo MOGA”, UIS Ingenierias, vol. 15, no. 2, pp. 17-33, jul-dic 2016,doi: 10.18273/revuin.v15n2-2016002.
  11. E.E Gaona Garcia, T Morales Vega. C.L Trujillo Rodríguez, F Santa María. “Esquemas de trasmisión de datos en una Microrred a través de una Infraestructura de medición avanzada”, UIS Ingenierías, vol. 15, no. 2, pp. 85-92, jul-dic 2016,doi:10.18273/revuin.v15n2-2016007.
  12. A. Tuladhar, H. Jin, T. Unger, and K. Mauch, “Parallel operation of single phase inverter modules with no control interconnections,” Proceedings of APEC 97 - Applied Power Electronics Conference, vol. 1, pp. 94–100, 1997.
  13. E. Coelho, P. Cortizo, and P. Garcia, “Small signal stability for single phase inverter connected to stiff AC system,” Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual
  14. Meeting, vol. 4, pp. 2180–2187, 1999.
  15. J. M. Guerrero, N. Berbel, J. Matas, L. G. De Vicuna, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters in microgrids using resistive output impedance,” IECON Proceedings (Industrial Electronics Conference), vol. 54, no. 2, pp. 5149– 5154, 2006.
  16. T. L. Vandoorn, B. Meersman, J. D. M. De Kooning, and L. Vandevelde, “Directly-coupled synchronous generators with converter behavior in islanded microgrids,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1395–1406, 2012.
  17. F. Dörfler, J. W. Simpson-porco, and F. Bullo, “Breaking the Hierarchy : Distributed Control and Economic Optimality in Microgrids,” vol. 3, no. 3, pp. 241–253, 2016.
  18. J.D. Bastidas Rodríguez, C.A Ramos Paja, “Types of inverters and topologies for microgrid applications” UIS Ingenierías, vol. 16, no. 1, pp. 7-14, ene-jun 2017