Vol. 17 Núm. 2 (2018): Revista UIS Ingenierías
Artículos

Estudio analítico y experimental del desempeño de motores diesel alimentados con Bio-Oil hidrotratado

Gabriel Fernando García Sánchez
Universidad Pontificia Bolivariana (UPB)
Biografía
Jorge Luis Chacón Velasco
Universidad Industrial de Santander
Biografía
Arlex Chaves Guerrero
Universidad Industrial de Santander
Andrés Felipe López García
Universidad de Antioquia

Publicado 2018-06-12

Palabras clave

  • Biocombustibles de segunda generación,
  • biocombustibles de primera generación,
  • modelos termodinámicos,
  • simulación de motores,
  • motores diesel

Cómo citar

García Sánchez, G. F., Chacón Velasco, J. L., Chaves Guerrero, A., & López García, A. F. (2018). Estudio analítico y experimental del desempeño de motores diesel alimentados con Bio-Oil hidrotratado. Revista UIS Ingenierías, 17(2), 115–126. https://doi.org/10.18273/revuin.v17n2-2018011

Resumen

Debido a los graves problemas presentados a causa del amplio uso de biocombustibles de primera generación, los biocombustibles de segunda generación se presentan como una posible mejor alternativa para la sustitución de los combustibles convencionales provenientes del petróleo. En el presente artículo se presenta un estudio del desempeño de motores diésel alimentados con bio-oil hidrotratado proveniente de biomasa lignocelulósica, el cual es un biocombustible de segunda generación; para esto se desarrolló un modelo termodinámico cero-dimensional de la combustión que predice los parámetros de desempeño del motor. Este modelo fue validado contra datos experimentales de presión en cámara de dos motores diésel alimentados con mezclas diésel/biodiésel y diésel/bio-oil hidrotratado, observándose una buena correlación entre los datos simulados y experimentales, con errores relativos promedio en los valores pico de presión de 0,5 y 1 % respectivamente. Los resultados muestran que el bio-oil hidrotratado, al utilizarse en pequeñas proporciones, puede convertirse en un sustituto parcial del combustible diésel convencional.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Serna F, Barrera L, Montiel H. Impacto Social y Económico en el uso de Biocombustibles. J Technol Manag Innov. 2011;6(1):100–14.
  2. Altieri MA. Los impactos ecológicos de los sistemas de producción de biocombustibles a base de monocultivos a gran escala en América. Agroecología. 2009;4:59–67.
  3. Hackenberg N. Biocombustibles de Segunda Generación. Rev Virtual REDESMA. 2008 Jul;2(2):49–61.
  4. Pinheiro A. Influence des composés oxygénés issus de la biomasse lignocellulosique et de leurs produits d’hydrodéoxygénation sur les cinétiques des réactions d’hydrotraitement de gazoles [Tesis Doctoral]. [Lyon, France]: Université Claude Bernard; 2008.
  5. Ramadhas AS, Jayaraj S, Muraleedharan C. Theoretical modeling and experimental studies on biodiesel-fueled engine. Renewable Energy. 2006 Sep;31(11):1813–26.
  6. Gogoi TK, Baruah DC. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends. Energy. 2010 Mar;35(3):1317–23.
  7. Ganapathy T, Gakkhar P, Murugesan K. An analytical and experimental study of performance on jatropha biodiesel engine. Thermal Science. 2009;13(3):69–82.
  8. Heywood J. Internal Combustion Engine Fundamentals. 1st ed. McGraw-Hill Science/Engineering/Math; 1988. 930 p.
  9. García Sánchez GF, Chacón Velasco JL, Chaves Guerrero A. Modelado de la combustión en motores Diésel: revisión del estado del arte. REVISTA ION [Internet]. 2013 Nov 9 [cited 2013 Nov 8];26(1). Available from: http://revistas.uis.edu.co/index.php/revistaion/article/view/3506
  10. Bueno AV, Velásquez JA, Milanez LF. Heat release and engine performance effects of soybean oil ethyl ester blending into diesel fuel. Energy. 2011 Jun;36(6):3907–16.
  11. Colaço MJ, Teixeira CV, Dutra LM. Thermal analysis of a diesel engine operating with diesel–biodiesel blends. Fuel. 2010 Dec;89(12):3742–52.
  12. Sanjay Patil, M.M.Akarte. Investigation on Effect of Variation in Compression Ratio on Performance and Combustion Characteristics of C.I Engine Fuelled With Palm Oil Methyl Ester (POME) and its Blends by Simulation. Global Journal of Researches in Engineering - Automotive Engineering. 2012;12(2):34–41.
  13. Kökkülünk G, Gonca G, Parlak A. The Effects of Design Parameters on Performance and NO Emissions of Steam-Injected Diesel Engine with Exhaust Gas Recirculation. Arab J Sci Eng. 2014 Mar 4;39(5):4119–29.
  14. Potdukhe SP, Deshmukh MM. Modeling and Energy Analysis of a Diesel and Biodiesel Fuelled Engine. International Journal of Science and Research (IJSR). 2015 May;4(5).
  15. Naitam T, Deshmukh MM. Combustion Modeling of Biodiesel Fuelled Direct Injection CI Engine. International Journal of Science and Research (IJSR). 2015 May;4(5):288–93.
  16. Mikulski M, Wierzbicki S. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine. Journal of Natural Gas Science and Engineering. 2016 Apr;31:525–37.
  17. Williams FA. Combustion Theory: Second Edition. Second Edition. Westview Press; 1994. 704 p.
  18. Faeth GM. Spray combustion phenomena. Symp (Int) Combust. 1996;26(1):1593–612.
  19. Payri F, Desantes JM. Motores de combustión interna alternativos [Internet]. 1st ed. España: Reverte; 2011 [cited 2012 Nov 1]. 1002 p. Available from: http://www.diazdesantos.es/libros/payri-f-motores-de-combustion-interna-alternativos-L0000468301039.html
  20. Lapuerta M, Ballesteros R, Agudelo JR. Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion. Appl Therm Eng. 2006 Oct;26(14–15):1492–9.
  21. Payri F, Olmeda P, Martín J, García A. A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy. 2011 Dec;88(12):4632–41.
  22. Miyamoto N, Chikahisa T, Murayama T, Sawyer R. Description and Analysis of Diesel Engine Rate of Combustion and Performance Using Wiebe’s Functions [Internet]. Warrendale, PA: SAE International; 1985 Feb [cited 2012 Nov 1]. Report No.: 850107. Available from: http://papers.sae.org/850107/
  23. Hardenberg HO, Hase FW. An Empirical Formula for Computing the Pressure Rise Delay of a Fuel from Its Cetane Number and from the Relevant Parameters of Direct-Injection Diesel Engines [Internet]. Warrendale, PA: SAE International; 1979 Feb [cited 2012 Nov 1]. Report No.: 790493. Available from: http://papers.sae.org/790493/
  24. Woschni G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine [Internet]. Warrendale, PA: SAE International; 1967 Feb [cited 2012 Dec 6]. Report No.: 670931. Available from: http://papers.sae.org/670931/
  25. Armas Vergel O, González FP. Diagnóstico experimental del proceso de combustión en motores diesel de inyección directa. Universidad Politécnica de Valencia; 1998. 212 p.
  26. Ferguson CR, Kirkpatrick AT. Internal Combustion Engines: Applied Thermosciences. 2nd ed. Wiley; 2000. 384 p.
  27. Benson RS. Advanced Engineering Thermodynamics. 2nd Revised edition. Pergamon Press; 1977. 345 p.
  28. Jagadish D, Kurmar R, K. M. Zero dimensional simulation of Combustion Process of a DI Diesel engine fuelled with Biofuels. WASET. 2011;80:819–25.
  29. Conti L, Scano G, Boufala J, Mascia S. Bio-crude oil hydrotreating in a continuous bench-scale plant. Dev Thermochem Biomass Convers. 1:622–32.
  30. Agudelo AF, Agudelo JR, Benjumea PN. Diagnostico de la combustion de biocombustibles en motores. Universidad de Antioquia; 2007. 147 p.