Vol. 16 No. 2 (2017): UIS Engineering Journal
Articles

Application of stochastic fields in geotechnical problems

Jorge Palomino Tamayo
Centro de Mecánica Aplicada y Computacional - CEMACOM, Facultad de Ingeniería Civil, Universidad Federal do Rio Grande do Sul-UFRGS
Armando Awruch
Centro de mecánica Aplicada y Computacional - CEMACOM, Facultad de Ingeniería Civil, Universidad Federal do Rio Grande do Sul-UFRGS
Wilson Rodríguez - Calderón
Centro de mecánica Aplicada y Computacional - CEMACOM, Facultad de Ingeniería Civil, Universidad Federal do Rio Grande do Sul-UFRGS

Published 2017-05-15

Keywords

  • Stochastic field,
  • finite element,
  • probabilistic analysis,
  • geotechnics

How to Cite

Palomino Tamayo, J., Awruch, A., & Rodríguez - Calderón, W. (2017). Application of stochastic fields in geotechnical problems. Revista UIS Ingenierías, 16(2), 185–196. https://doi.org/10.18273/revuin.v16n2-2017017

Abstract

This work focuses on the probabilistic analysis of slope stability and rigid shallow footing problems. For this purpose, mathematical models based on the Finite Element Method (FEM), Montecarlo (MC) method and Local Average Subdivision (LAS) procedure are studied. The LAS procedure is used to generate random fields, which properly represent the associated uncertainties in the properties of the materials. The FEM focuses on the numerical response of the problem in terms of displacements and stresses. The plasticity of the soil can be included via a visco-plastic algorithm beside a Mohr-Coulomb law. The LAS and MEF procedures are implemented in the framework of a MC analysis, where each MC execution requires several simulations of the problem at hand. This permits to quantify the failure probability of the system and report the most probable settlement to occur in the case of shallow foundations. After many executions of the numerical model, it is suggested that at least 4000 and 500 simulations are needed for the slope stability and shallow foundation problems, respectively, in order to obtain stable and reliable values. The obtained results show that the failure probability of the slope is relatively low and equal to 0.18, while the expected settlement of a shallow rigid foundation is around 1.96 cm.

Downloads

Download data is not yet available.

References

BARI, W. Modeling of ground improvement by vertical drains inhighly variable soils, 2012. PhD thesis. Curtin University, Western.

BRESSANI, L.A., COSTA, E.A. Probabilistic evaluation of the stability of a slope colluvionar of basalt (In Portuguese), IV COBRAE-Conferencia Brasileira sobre Estabilidade de Encostas, COBRAE, Salvador, BA, Brazil, Vol. 4, p. 699-709, 2005.

CHOK, Y. Modelling the effects of soil variability and vegetation on the stability of natural slopes, 2008. PhD thesis. School of Civil, Environmental and Mining Engineering, The Universityof Adelaida.

CAVALCANTE, S.P.P.C., VIEIRA, V.P.P.B., COUTINHO, R.Q. Stability risk analysis of downstream slope of an operating dam (In Portuguese), IV COBRAE-Conferencia Brasileira sobre Estabilidade de Encostas, COBRAE, Salvador, BA, Brazil, Vol. 4, p. 515-530, 2005.

FENTON, G.A. Simulation and analysis of random fields generators, 1990. PhD thesis. Princeton University, USA.

FENTON, G.A., GRIFFITHS, D.V. Risk Assessment in Geotechnical Engineering, 1st ed., USA: John Wiley and Sons, 2008.

FENTON, G.E., VANMARCKE, E. Simulation of random fields via local average subdivision. Journal of Engineering Mechanics, v. 116, p. 1733-1749, 1990.

LAMUS, AVELINO AMADO; MARTÍNEZ, EDGAR HERNÁN; MALDONADO, ESPERANZA. Estimación del daño sísmico para puentes de varios vanos a partir de los modelos de Park y del ATC - 6.2. Revista UIS Ingenierías, [S.l.], v. 2, n. 1, ene. 2012. ISSN 2145-8456.

LUMB, P. The variability of natural soils. Canadian Geotechnical Journal, v. 3, p. 74-97, 1966.

PAIBOON, J. Numerical analysis of homogenization using random finite element method, 2013. PhD thesis. Colorado State University, Colorado.

SMITH, I. M., GRIFFITHS, D.V., MARGETTS, L. Programming the finite element. John Wiley and Sons Ltd, United Kingdom, 2014.

TAMAYO, J.P.L., AWRUCH, A.M. On the validation of a numerical model for the analysis of soil-structure interaction problems. Latin American Journal of Solids and Structures, v. 13, n. 8, 2016a. ISSN 1679-7825.

TAMAYO, J.P.L., AWRUCH, A.M. Numerical simulation of reinforced concrete nuclear containment under extreme loads. Structural Engineering and Mechanics, v. 58, n. 5, 2016b. ISSN 1225-4568.

VANMARCKE, E. H. Random fields: analysis and synthesis. The MIT press, Cambridge, Massachusetts, USA, 1983.

VANMARCKE, E. H. Probabilistic modelling of soil profiles. Journal of Geotechnical Engineering Division, v. 103, p. 1227-1246, 1977.