Analysis of sensitivity and numerical stability in the calculation of factors of tension intensity in a case of fracture mechanics
Published 2017-05-15
Keywords
- Sensibility analysis,
- ANSYS,
- MAXIMA,
- method of placement of the contour,
- finite elements
- fracture mechanics ...More
How to Cite
Abstract
The article studies the calculation of stress intensity factors in a case of fracture mechanics in steel plates under uniform load configuration. The sensitivity of the first mode factor of stress intensity KI with respect to the relationships a/w, a/h, h/w (a: initial fracture size, w: plate width, h: vertical distance between fracture and the loading line) is explored. We perform comparisons of the results obtained by different methodologies such as the analytical obtained from the literature, the method of placement of the contour implemented in the free software MAXIMA and the finite element method implemented through a model in ANSYS. Since the method of positioning the contour incorporates a generalized least squares solution, we could observe some problems of numerical instability associated mainly to cases in which the size of the initial fracture is considerable with respect to the width of the loaded plate. The most relevant contributions are given regarding the particular sensitivity analysis of the case, the analysis of problems of numerical instability in specific situations of KI calculation, implementations of free software codes such as MAXIMA and implementation of finite element models in ANSYS using Quarter Elements Point. The results obtained are reported by numerical and graphical comparisons of the behavior of the KI factor for the different relationships studied under different methodologies. The article concludes on what are the significant relations in the sensitivity of the stress intensity factor KI and the origin of the problems of numerical instability of the placement method by the parametric study associated to the condition number of the system of the global matrix of the same method.
Downloads
References
Barsoum, R. S. On The Use of Isoparametric Finite Elements in Linear Fracture Mechanics. International Journal for Numerical Methods in Engineering, V. 10, N. 1, P. 25-37, 1976. ISSN 1097-0207.
Bittencourt, E. Mecânica Da Fratura E Do Dano. UFRGS 2011.
González, V.; Maravilla, E.; Tarancón, J. Descripción del crecimiento de grietas usando una aproximación geométrica basada en level sets y fast marching method. Revista uis ingenierías, [s.l.], v. 16, n. 1, ene. 2017. ISSN 2145-8456. http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/6011.
González. V.; Maravilla. E.; Tarancón, J. Comparación de esquemas de integración 3D para elementos enriquecidos en XFEM. Revista UIS Ingenierías, [s.l.], v. 15, n. 2, nov. 2016. ISSN 2145-8456. http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/7-16 https://doi.org/10.18273/revuin.v15n2-2016001.
González, O.; Leal, j.; Reyes, J. Análisis de integridad estructural de tuberías de material compuesto para el transporte de hidrocarburos por elementos finitos. Revista UIS Ingenierías, [S.l.], v. 15, n. 2, nov. 2016. ISSN 2145-8456. http://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/105-116. https://doi.org/10.18273/revuin.v15n2-2016009.
Gross, B.; Srawley, J. E.; Brown Jr, W. F. Stress-Intensity Factors for A Single-Edge-Notch Tension Specimen by Boundary Collocation of a Stress Function. DTIC Document. 1964
Hibbitt, H. Some Properties of Singular Isoparametric Elements. International Journal for Numerical Methods in Engineering, V. 11, N. 1, P. 180-184, 1977. ISSN 1097-0207.
Hughes, T. J. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Dover Publications, 2012. ISBN 0486135020.
Ingraffea, A. R.; Manu, C. Stress‐Intensity Factor Computation in Three Dimensions with Quarter‐Point Elements. International Journal for Numerical Methods in Engineering, V. 15, N. 10, P. 1427-1445, 1980. ISSN 1097-0207.
Peano, A.; Pasini, A. A Warning Against Misuse of Quarter‐Point Elements. International Journal for Numerical Methods in Engineering, V. 18, N. 2, P. 314-320, 1982. ISSN 1097-0207.
Pin, T.; Pian, T. H. On The Convergence of the Finite Element Method for Problems with Singularity. International Journal of Solids and Structures, V. 9, N. 3, P. 313-321, 1973. ISSN 0020-7683.
Quintero, Y. et al. Optimización de diseños de fractura hidráulica aplicando estudios geomecánicos. Revista fuentes, [s.l.], v. 8, n. 2, mayo 2011. ISSN 2145-8502. http://revistas.uis.edu.co/index.php/revistafuentes/article/view/1626
Zehnder, A. T. Lecture Notes On Fracture Mechanics. Available for Public Use at Cornell University Website http://Ecommons. Library. Cornell.
Edu/Bitstream/1813/3075/6/Fracture_Notes_2008.pdf, 2007.