Vol. 17 No. 1 (2018): Revista UIS Ingenierías
Articles

Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers

Sergio Gómez
Universidad Pontificia Bolivariana
Bladimir Bladimir Ramón
Universidad de Pamplona
Rolando Guzman
Universidad Pontificia Bolivariana

Published 2018-01-06

Keywords

  • Modal Analysis,
  • composite,
  • fique,
  • E-glass,
  • scanning electron microscopy,
  • tensile test
  • ...More
    Less

How to Cite

Gómez, S., Bladimir Ramón, B., & Guzman, R. (2018). Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers. Revista UIS Ingenierías, 17(1), 43–50. https://doi.org/10.18273/revuin.v17n1-2018004

Abstract

In the following research, the mechanical and dynamic vibratory properties between a fique fiber reinforced composite and a composite with E-glass fibers were compared. The materials were fabricated trough a vacuum infusion manufacturing technique using a bioepoxy resin. The mechanical properties were obtained by tensile tests according to the ASTM standards for each configuration. The results demonstrated higher values in stiffness and strength for the composite with E-glass fiber. Experimental modal analysis was used for the dynamic vibrational study, obtaining very similar behaviors for each material. The interface between the materials was studied by scanning electron microscopy, in which a low adhesion between the natural fiber and the resin was evidenced; affecting the mechanical and dynamic properties of the fique composite compared to the E-glass composite.

Downloads

Download data is not yet available.

References

R. A. Khan et al., “Comparative Studies of Mechanical and Interfacial Properties Between Jute Fiber/PVC and E-Glass Fiber/PVC Composites,” Polym. Plast. Technol. Eng., vol. 50, no. 2, pp. 153–159, 2011.

F. M. AL-Oqla and M. S. Salit, “2 - Natural fiber composites,” in Materials Selection for Natural Fiber Composites, F. M. AL-Oqla and M. S. Salit, Eds. Woodhead Publishing, 2017, pp. 23–48.

P. Haldar, N. Modak, and G. Sutradhar, “Comparative Evaluation of Mechanical Properties of Sisal-Epoxy Composites with and Without Addition of Aluminium Powder,” Mater. Today Proc., vol. 4, no. 2, pp. 3397–3406, 2017.

S. Das, “Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites,” Carbohydr. Polym., vol. 172, pp. 60–67, 2017.

A. Deb, S. Das, A. Mache, and R. Laishram, “A Study on the Mechanical Behaviors of Jute-polyester Composites,” Procedia Eng., vol. 173, pp. 631–638, 2017.

S. S. Rana, M. K. Gupta, and R. K. Srivastava, “Effect of variation in frequencies on dynamic mechanical properties of short sisal fibre reinforced epoxy composite,” Mater. Today Proc., vol. 4, no. 2, pp. 3387–3396, 2017.

G. L. E. Prasad, B. S. K. Gowda, and R. Velmurugan, “Comparative Study of Impact Strength Characteristics of Treated and Untreated Sisal Polyester Composites,” Procedia Eng., vol. 173, pp. 771–777, 2017.

M. N. Akhtar et al., “Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications,” Prog. Nat. Sci. Mater. Int., vol. 26, no. 6, pp. 657–664, 2016.

R. Dunne, D. Desai, and R. Sadiku, “Material characterization of blended sisal-kenaf composites with an ABS matrix,” Appl. Acoust., vol. 125, pp. 184–193, 2017.

C. Gómez Hoyos and A. Vázquez, “Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application,” Compos. Part B Eng., vol. 43, no. 8, pp. 3120–3130, 2012.

M. A. Hidalgo-Salazar, M. F. Muñoz, and J. H. Mina, “Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers,” Int. J. Polym. Sci., vol. 2015, 2015.

B. Zuccarello and R. Scaffaro, “Experimental analysis and micromechanical models of high performance renewable agave reinforced biocomposites,” Compos. Part B Eng., vol. 119, pp. 141–152, 2017.

P. Gañán and I. Mondragon, “Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites,” J. Therm. Anal. Calorim., vol. 73, no. 3, pp. 783–795, 2003.

P. Gañán and I. Mondragon, “Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior,” J. Mater. Sci., vol. 39, pp. 3121–3128, 2004.

M. F. Muñoz, M. A. Hidalgo, and J. H. Mina, “Fibras de fique una alternativa para el reforzamento de plásticos. Influencia de la modificación superficial,” vol. 12, no. 2, pp. 60–70, 2014.

J. H. Mina, “Caracterización Físico-Mecánica De Un Almidón Termoplastico De Yuca Y Análisis Interfacial Con Fibras De Fique,” Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 10, no. 2, pp. 99–110, 2012.

H. . Sánchez, J. Uscátegui, and S. Gómez, “Metodología para la detección de fallas en una estructura entramada metálica empleando las técnicas de análisis modal y PSO,” Rev. UIS Ing., vol. 16, no. 2, pp. 43–49, 2017.

O. A. Gonzalez-Estrada, J. Leal Enciso, and J. D. Reyes Herrera, “Análisis de integridad estructural de tuberías de material compuesto para el transporte de hidrocarburos por elementos finitos,” Rev. UIS Ing., vol. 15, no. 2, pp. 105–116, 2016.

K. Senthil Kumar, I. Siva, P. Jeyaraj, J. T. Winowlin Jappes, S. C. Amico, and N. Rajini, “Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams,” Mater. Des., vol. 56, no. October, pp. 379–386, 2014.

K. L. Pickering, M. G. A. Efendy, and T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 98–112, 2015.

R. Chandra, S. P. Singh, and K. Gupta, “Damping studies in fiber-reinforced composites - a review,” Compos. Struct., vol. 46, no. 1, pp. 41–51, 1999.

M. Sumaila, I. Amber, and M. Bawa, “Effect of Fiber Length on the Physical and Mechanical Properties of Random Oreinted, Nonwoven Short Banana, Musa,” Cellulose, vol. 2, no. 1, pp. 39–49, 2013.

L. J. Rodríguez, W. A. Sarache, and C. E. Orrego, “Compuestos de poliéster reforzados con fibra de plátano/banano, Musa paradisiaca modificada químicamente. Comparación con fibra de vidrio y fique (Furcraea andina),” Inf. Tecnol., vol. 25, no. 5, pp. 27–34, 2014.

M. Rajesh and J. Pitchaimani, “Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite,” J. Reinf. Plast. Compos., vol. 35, no. 3, pp. 228–242, 2016.

D. C. Darrow, P. A. Propatic, and T. H. Brayden Jr, “Elimination of mold surface porosity on composite parts,” J. Adv. Mater., vol. 27, pp. 41–46, 1995.

L. Hamill, T. Centea, G. Nilakantan, and S. Nutt, “Surface Porosity in Out-of-Autoclave Prepreg Processing: Causes and Reduction Strategies,” International SAMPE Technical Conference. 2014.

M. L. Herring, J. I. Mardel, and B. L. Fox, “The effect of material selection and manufacturing process on the surface finish of carbon fibre composites,” J. Mater. Process. Technol., vol. 210, no. 6–7, pp. 926–940, 2010.

M. L. Herring and B. L. Fox, “The effect of a rapid curing process on the surface finish of a carbon fibre epoxy composite,” Compos. Part B Eng., vol. 42, no. 5, pp. 1035–1043, 2011.

L. Hamill, T. Centea, and S. Nutt, “Surface porosity during vacuum bag-only prepreg processing: Causes and mitigation strategies,” Compos. Part A Appl. Sci. Manuf., vol. 75, pp. 1–10, 2015.

C. Gómez Hoyos, V. A. Alvarez, P. G. Rojo, and A. Vázquez, “Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application,” Fibers Polym., vol. 13, no. 5, pp. 632–640, 2012.