Vol. 14 No. 2 (2015): Revista UIS Ingenierías
Articles

Emulation of binary continuous distillation column for training purposes in control

Diego Fernando Franco Ocampo
Universidad del valle
Bio
Edinson Franco Mejía
Universidad del Valle
Bio

Published 2015-04-13

Keywords

  • Emulation,
  • Binary Distillation Columns,
  • Real-Time,
  • Control Education,
  • Platform

How to Cite

Franco Ocampo, D. F., & Franco Mejía, E. (2015). Emulation of binary continuous distillation column for training purposes in control. Revista UIS Ingenierías, 14(2), 7–17. https://doi.org/10.18273/revuin.v14n2-2015002

Abstract

The emulation and real-time simulation in the teaching and learning processes or the development of process control research, allows controlled experimentation without having the real system. This paper shows the emulation of one of the most significant operations in chemical plant operations: distillation columns. The emulator development is performed on the columns model in an application platform based on real-time Linux composed of RTAI, RTAI-Lab, and RTAI-XML projects. In response, emulation product composition under disturbances in the supply is obtained. Emulation results are compared with the simulation results obtained in MATLAB and show that the response of change composition inputs or the perturbation changes are close to the response obtained with MATLAB simulation

 

Downloads

Download data is not yet available.

References

  1. Antsaklis, P. et al. Report on the NSF/CSS Workshop on New Directions in Control Engineering Educaion. Control Systemas, IEEE, 19, 53-58, 1999. Doi:10.1109/MCS.1999.793442.
  2. Arbildo López, A.; Lombira Echevarría, J.; Osario López, I. Simulación dinámica y control difuso de una columna de destilación continua. Revista Peruana de Química e Ingeniería Química, 5, 47-57, 2002.
  3. Basualdo, M. S. Dynamic Simulation of Chemical Process as a Tool to Teach “The Real Problem” of Identification and Control. En Frontiers in Education Conference, 1995. Proceedings. (pp. 1–4). Atlanta, GA: IEEE, 1995. doi:10.1109/FIE.1995.483123.
  4. Chang, G.; Liu, Y.; Dinavahi, V.; Ke, M. Applications of Real-Time Simulation Techniques for Harmonics Study of Industrial Power System. En Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1–5). Pittsburgh, PA:
  5. IEEE, 2008. doi:10.1109/PES.2008.4596633.
  6. CMSimple_XH RTAI - Real Time Application Interface Official Website., 2014. URL: https://www.rtai.org/.
  7. Dixit, V.; Patil, M.; Chandorkar, M. Real Time Simulation of Power Electronic Systems on Multi-core Processor. En Power Electronics and Drive Systems, International Conference on (pp. 1524–1529). Taipei: IEEE, 2009. doi:10.1109/PEDS.2009.5385756.
  8. Dormido, S. Control Learning: Present and Future. Annual Reviews in Control, Willey, 28, 115–136, 2004. doi:10.1016/j.arcontrol.2003.12.002.
  9. Gorrinoa, J. P.; Arias, P. L.; Legarreta, J. A. Simulation Model to Optimize Distillation Processes. Chemical Engineering Communications, 189, 448–470, 2002.
  10. Huyck, B.; De Brabanter, J.; De Moor, B.; Van Impe, J. F.; Logist, F. Online model predictive control of industrial processes using low level control hardware: A pilot-scale distillation column case study. Control Engineering Practice, 28, 34–48, 2014. URL: http: //www.sciencedirect.com/science/article/pii/S0967066114000872.doi:http://dx.doi.org/10.1016/j.conengprac.2014.02.016.
  11. Kheir, N.; Aström, K.; Auslander, D.; Cheok, K.; Franklin, G.; Masten, M.; Rabins, M. Control Systems Engineering Education. Automatica, 2, 147–166, 1996.
  12. Ramos-Paja, C.; Romero, A.; Giral, R.; Vidal-Idiarte, E.; MartinezSalamero, L. Fuzzy Based Modelling Technique for PEMFC Electrical Power Generation Systems Emulation. Power Electronics, IET, 2, 241 – 255, 2009.
  13. Ramos-Paja, C.; Romero, A.; Giral, R.; Vidal-Idiarte, E.; MartinezSalamero, L., L.; Sanchez, C. I. Switching and Linear Power Stages Evaluation for PEM Fuel Cell Emulation. International Journal Of Circuit Theory And Applications, 39, 475–499, 2011. doi:10.1002/cta.651.
  14. Skogestad, S. Dynamics and Control of Distillation Columns: A Critical Review. Modeling, identification and control, 18, 177–217, 1997.
  15. Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control. Analysis and Design. (2a ed.). West Sussex, England: Jhon Wiley and Sons, Ltd., 1996.
  16. Téllez-Anguiano, A.; Rivas-Cruz, F.; Astorga-Zaragoza, C.-M.; Alcorta-García, E.; Juárez-Romero, D. Process Control Interface System for a Distillation Plant. Computer Standards & Interfaces, 31, 471–479, 2009. URL: http://www.sciencedirect.com/science/article/
  17. pii/S0920548908000895. doi:10.1016/j.csi.2008.06.007.
  18. Truong, H.; Ismail, I.; Razali, R. Fundamental Modeling and Simulation of a Binary Continuous Distillation Column. En Intelligent and Advanced Systems (ICIAS), International Conference on (pp. 1– 5), 2010.