Vol. 17 No. 1 (2018): Revista UIS Ingenierías
Articles

Simulation of the interaction between hydraulic fractures and natural fractures with application of continuum damage

Anny Vanessa Zambrano Luna
Universidad Industrial de Santander
Bio
Germán González Silva
Universidad Industrial de Santander (UIS).
Yair Andrés Quintero Peña
Instituto Colombiano del Petróleo (ICP)
Bio

Published 2018-01-10

Keywords

  • Complex fracture network,
  • continuum damage,
  • hydraulic fractures,
  • natural fractures,
  • stiffness

How to Cite

Zambrano Luna, A. V., González Silva, G., & Quintero Peña, Y. A. (2018). Simulation of the interaction between hydraulic fractures and natural fractures with application of continuum damage. Revista UIS Ingenierías, 17(1), 169–184. https://doi.org/10.18273/revuin.v17n1-2018016

Abstract

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures through a model, whose objective is to represent the path of propagation and the relationship between these two types of fractures, as well as predict their complex behavior without the need to predefine its direction as it occurs in other applications of finite elements, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing or fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, strain hardening and softening, and strain based damage evolution in compression and tension. 

Downloads

Download data is not yet available.

References

J. Taheri, E. Akhgarian y A. Ghaderi, “The Effect of Hydraulic Fracture Characteristics on Production Rate in Thermal EOR Methods,” Fuel, vol. 141, pp. 226-235, Feb. 2014.

N. Potluri et al., “Effect of Natural Fractures on Hydraulic Fracture Propagation,” SPE European Formation Damage Conference, Sheveningen, The Netherlands: Society of Petroleum Engineers, 2005, pp. 1-6.

C. Cipolla et al., “Modelling Well Performance in Shale-Gas Reservoirs,” SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, UAE: Society of Petroleum Engineers, 2009.

M. Wangen, “Finite Element Modeling of Hydraulic Fracturing in 3D,” Computational Geosciences, vol. 17, pp. 647-659, Ago. 2013.

L. Li, C. Tang, G. Li, S, Wang, Z, Liang y Y. Zhang, “Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique,” Rock Mechanics and Rock Engineering, vol. 45, pp. 801-818, Sep. 2012.

D. Lubliner, “A Plastic DamageModel for Concrete,” International Journal of Solids and Structures, vol. 25, pp. 299-326, 1989.

F. Lee y G. Fenves, “Plastic Damage Model for Cyclic Loading of Concrete Structures,” Journal of Engineering Mechanics, vol. 124, pp. 892-900, Ago. 1998.

Simulia, “Abaqus 6.11 Documentation. Abaqus Analysis User's Manual”. [En línea]. Disponible en: http://130.149.89.49:2080/v6.11/books/usb/default.htm

Simulia, “Abaqus 6.11 Documentation. Abaqus Theory Manual” [En línea]. Disponible en: http://130.149.89.49:2080/v6.11/books/stm/default.htm

S. Busetti, K. Mish y Z. Reches, “Damage and Plastic Deformation of Reservoirs Rcoks: Part 1. Damage Fracturing,” American Association of Petroleum Geologists, vol. 96, pp. 1687-1709, Sep. 2012.

J. Jaeger y N. Cook, “Fundamentals of Rocks Mechanics”. London Chapman and Hall, pp. 593, 1976.

W. Brace, B. Paulding y C. Scholz, “Dilatancy in the Fracture of Crystalline Rocks,” Journal of Geophysical Research, pp. 3939-3953, Ago. 1966.

S. Murrel, “The Effect of Triaxial Stress Systems on the Strength of Rocks at Atmosfheric Temperatures,” Geophysical Journal International , pp. 231-281, Dic. 1965.

Z. Reches y J. Dieterich, “Faulting of Rocks in Three Dimensional Strain Fields. Failure of Rocks in Polyaxial, Servo-Control Experiments,” Tectonophysics, vol. 96, pp. 111-132, May. 1983.

K. Mogi, “Rock Fracture,” Anuual Review of Earth and Planetary Sciences, vol. 1, pp. 63-84, May. 1973.

E. Alonso, A. Gens y A. Josa, “A Constitutive Model for Partially Saturated Soils,” Geotechnique, vol. 40, pp. 405-430, 1990.

S. Busetti, “Fracturing of Layered Reservoir Rocks,” Ph.D. dissertation, University of Oklahoma, 2009.

A. Taleghani, M. Gonzalez y A. Shojaei, “Overview of Numerical Models for Interactions between Hydraulic Fractures and Natural Fractures: Challenges and Limitations,” Computers and Geotechnics, pp. 361-368, 2016.

S. Busetti, K. Mish, P. Hennings y Z. Reches, “Damage and Plastic Deformation of Reservoir Rocks: Part 2. Propagation of a Hydraulic Fracture,” American Association of Petroleum Geologists, vol. 96, pp. 17111732, Sep. 2012.

R. Nelson, Geologic Analysis of Naturally Fractured Reservoirs, 2 ed. Houston, TX.: Gulf Prefessional Publishing, 2001.

G. Shen, X. Shen y S. Wang, “Numerical and Experimental Studies on Fracture Propagation at a Bimaterial Interface and Its Application to Hydraulic Fracturing,” American Rock Mechanics Association, Jun. 2014.

D. Healy, “Hydraulic Fracturing or "Fracking": A Short Summary of Current Knowledge and Potential Environmental Impacts,” Science, Technology, Research &
Innovation for the Environment Programme, Jul. 2012.

J. Olson y A. Dahi-Taleghani, “The Influence of Natural Fractures on Hydraulic Fracture Propagation,” AAPG, Datapages, Inc. [En línea]. Disponible en: http://www.searchanddiscovery.com/pdfz/documents/20 10/40583olson/ndx_olson.pdf.html

J. Zhou y C. Xue, “Experimental Investigation of Fracture Interaction between Natural Fractures and Hydraulic Fracture in Naturally Fractured Reservoirs,” SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria: Society of Petroleum Engineers, 2011.

T. Blanton, “An Experimental Study of Interaction Between Hydraulically Induced and Pre-Existing Fractures,” SPE Unconventional Gas Recovery Symposium, Pittsburgh, Pennsylvania: Society of Petroleum Engineers, 1982.

K. Wu y J. Olson, “Numerical Investigation of Complex Hydraulic-Fracture Development in Naturally Fractured Reservoirs,” SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, 2016.

X. Weng, “Modeling of Complex Hydraulic Fractures in Naturally Fractured Formation,” Journal of Unconventional Oil and Gas Resources, vol. 9, pp. 114135, Mar. 2015.

A. Daneshy, “Hydraulic Fracture Propagation in the Presence of Planes of Weakness,” SPE European Spring Meeting, Amsterdam, Netherlands: Society of Petroleum Engineers, 1974.

G. González, E. Matos, W. Martignoni y M. Mori. “The Importance of 3D Mesh Generation for Large Eddy Simulation of Gas-Solid Turbulent Flows in a Fluidized Beds,” World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering, vol. 6, pp. 770-777, 2012.

G. González, N. Prieto y O. Salazar, “Fluid Dynamics of Gas – Solid Fluidized Beds,” en Advanced Fluid Dynamics, 1a ed. Intech, 2012, cap. 3, pp. 39-58.

F. Mavares y A. Pertuz, “Cementación de Revestidor en Flujo de Gas/Agua Presurizado Superficial no Esperado en un Campo de Desarrollo Costa Afuera: Rio de Janeiro, Brasil,” Rev. UIS Ing., vol. 16, no. 2, pp. 79-92, 2017.

W. Rodríguez, R. Rojas, José Yépez y M, Pallares, “Ánalisis de Sensibilidad y de Estabilidad Numérica en el Cálculo de Factores de Intensidad de Tensiones en un Caso de Mecánica de Fractura,” Rev. UIS Ing., vol. 16, no. 2, pp. 151-160, 2017.

D. González, C. Villabona, H. Vargas, E. Ariza, C. Roa y C. Barajas, “Métodos para el Control e Inhibición de la Acumulación de Depósitos Parafínicos,” Rev. UIS Ing., vol. 9, no. 2, pp. 193-206, 2010.