Vol. 17 No. 2 (2018): Revista UIS Ingenierías
Articles

Electronic module design for automatic fish breeding through multiparametric mathematical modeling that simulates necessary basic conditions for breeding in artificial ponds according to physico-chemical parameters

Hernán Díaz-Lopez
Unidades Tecnológicas de Santander
Yezid Vargas-Gómez
Unidades Tecnológicas de Santander

Published 2018-02-26

Keywords

  • Physical factors,
  • chemical factors,
  • computational tools,
  • mathematical model,
  • parameters in water quality,
  • pH,
  • fish farming,
  • dissolved oxygen,
  • temperature
  • ...More
    Less

How to Cite

Díaz-Lopez, H., & Vargas-Gómez, Y. (2018). Electronic module design for automatic fish breeding through multiparametric mathematical modeling that simulates necessary basic conditions for breeding in artificial ponds according to physico-chemical parameters. Revista UIS Ingenierías, 17(2), 253–268. https://doi.org/10.18273/revuin.v17n2-2018022

Abstract

Aquaculture is one of the activities that has had economic growth in the productive sector at a national level. This activity depends on the management that can be given to the body of water, which requires attention on certain physico-chemical parameters such as temperature, dissolved oxygen, pH, among others to obtain production success. In this work we show the study of several mathematical models where water quality is taken as a case study, with the purpose of simplifying them, maintaining the maximum of the model using three methodologies through computational tools, as well as relations or temporal evolution of each variable, expressed through corresponding mathematical relations of the real world (technological relations, physical laws, market restrictions, etc.) estimating the behavior of the process for certain conditions.

 

In the first instance, the parameters for the characterization such as feed regime, biomass, alkalinity, aeration, photosynthetic effects, among other physical, chemical and biological factors of easier measurement are defined in a sequence of particular cases. With this, the mathematical model is adapted by taking elements from their coding in equations, which allow an analysis of inputs / outputs to find an expression for their concentration in steady state by the ratio of these quantities to the maximum admissible concentration, which is expected, to be condensed into a "single" multifactorial model that characterizes the whole process, seeking to maintain certain parameters considered as critical, within acceptable limits. All this, based on standardized models incorporating the modifications or improvements that each one of them contributes with and through the previous study that has tried to integrate all the process inside artificial geomembrane ponds, implementing monitoring tools that allow for statistical management, registration of changes in the patterns, besides being able to generate historical reports, and important information of the process.

 

The identification in real systems is made using the MATLAB Toolbox, obtaining a significant amount of data to ensure sufficient information of the dynamics of the system, validating several models, reducing the solution to "minimum expression". Additionally, an interface that facilitates the input of parameters is designed; it simulates different crop scenarios or initial conditions of the system for the estimation of the multiple variables in a reduced number of these. Likewise, the interface allows to determine the maximum number of cultivated population that the environment can withstand in a period of time, that condenses in the proper operation of fishery projects in a continuous way without affecting the health of the fish, this due to a great extent to the lack of a control instrument to help control the water quality of the process; so as to minimize the environmental impact, improve the commercial benefits, paying special attention to those aspects that most influence the commercial culture, complying with the recommendations on fish stocking; This work being a starting point, presenting a series of procedures, observations, and recommendations.

Downloads

Download data is not yet available.

References

A. Alonso, R. Porras, e Y. Vargas, “Prototipo de un sistema automatizado para la crianza de peces en estaques artificiales”. Facultad de Ciencias Naturales e Ingenierías, Unidades Tecnológicas de Santander - UTS San Gil, 2015.

A. Regalado, E. Peralta, and C. González. “Cómo hacer un modelo matemático”. Universidad del Mar, Campus Puerto Ángel, Instituto de Industrias - Instituto de Ecología. Temas de Ciencia y Tecnología vol. 12 No 35, págs. 9 – 18, 2008.

A. Stigebrandt, J. Aure, A. Ervik, P.K. Hansen, “Regulating the local environmental impact of intensive marine fish farming III. A model for estimation of the holding capacity in the Modelling-Ongrowing fish Farm-Monitoring system”. Aquaculture. 234:239-261, 2004.

Beveridge, M.C.M., “Piscicultura en jaulas y corrales. Modelos para calcular la capacidad de carga y las repercusiones en el ambiente”. FAO Doc. Téc. Pesca, (255): 100 p., 1986. [En línea]. Disponible en: http:// www.fao.org/DOCREP/005/AD021S/AD021S00. HTM

B. Rincón, E. Caballero, e Y. Vargas, “Estudio de la tecnología en instrumentación piscícola empleada para el muestreo de la calidad del agua, con el fin de poder minimizar el número de variables implícitas en su proceso de medición”. Facultad de Ciencias Naturales e Ingenierías, Unidades Tecnológicas de Santander - UTS San Gil, 2017.

C.J. Cromey, K. Nickell, D. Black, “Modelling the deposition and biological effects of waste solids from marine cage farms”. Aquaculture. 214:211-239, 2002.

D. Cuesta-Parra, C. Velazco-Rincón, J. Castro-Pardo, “Evaluación ambiental asociada a los vertimientos de aguas residuales generados por una empresa de curtiembres en la cuenca del río Aburrá,” Rev. UIS Ing., vol. 17, no. 2, pp. 141-152, 2018. Doi: https://doi.org/10.18273/revuin.v17n2-2018013

D. L. Bottom, D.J. Stouder, P.A. Bisson, R.J. Naiman, “To Till the water: a history of ideas in fisheries conservation. Pacific Salmon and Their Ecosystems: Status and Future Options”. Ed. Chapman Hall (New York). p. 569-597, 1997.

D. Brigolin, R. Pastres, T.D. Nickell, C.J. Cromey, D.R. Aguilera, and P. Regnier, “Modelling the impact of aquaculture on early diagenetic processes in sea loch sediments”. Marine Ecol. Progress Series. 388:63-80, 2009.

E. Mayer, H. Biomin, “Control de la calidad del agua de estanques para mejorar la producción de camarones y peces”. [PDF]. Disponible en: https://cap.auburn.edu/blog/2012/05/control-de-la-calidad-del-agua-de-estanques-para-mejorar-la-produccion-de-camarones-y-peces/?lang=es.

E. García, I. Amaya, R. Correa, “Algoritmos de optimización en la estimación de propiedades termodinámicas en tiempo real durante el tratamiento térmico de materiales con microondas,” Rev. UIS Ing., vol. 16, no. 2, pp. 129-140, 2017. Doi: https://doi.org/10.18273/revuin.v16n2-2017012

O. Gelvéz-Arocha, J. Quiroga-Mendez, D. Barajas-Merchán, M. Gómez-Sarmiento, “Estudio experimental de las estrategias de control On-Off y control continuo en un sistema de refrigeración,” Rev. UIS Ing., vol. 11, no. 1, pp. 73-82, 2012.

H.M. Buyukcapar, A. ALP, “The carrying capacity and suitability of the menzelet reservoir (Kahramanmaras- Turkey) for trout culture in terms of water quality”. J. Appl. Sci. 6:2774-2778, 2006.

J. Cano, J. A. Luna, and Ch. A. Rivera, “Automatización de un Invernadero de Pez Tilapia”. IPN, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Culhuacán. México D.F, 2009.

J. Riascos, D. Díaz, L. Beltrán, F. Gutiérrez. “Modelo Dinámico para Estimar la Capacidad de Carga de Cuerpos de Agua con Piscicultura”. Revista U.D.C.A Actualidad & Divulgación Científica. ISSN 0123-4226, Vol.15 No.1. Bogotá, 2012.

N.C. Stickland, R.N. White, P.E. Mescall, A.R. Crook, and J.E. Thorpe. “The effect of temperature on myogenesis in embryonic development of the Atlantic salmon (Salmo salar, L.)” Anat. Embryol. 178:253-257, 1988.

R. Núñez, O. Pinzón, “Controlador robusto basado en la técnica QFT para convertidores DC-DC buck -boost como regulador de voltaje en generadores fotovoltaicos,” Rev. UIS Ing., vol. 17, no. 1, pp. 243-250, 2018. Doi: https://doi.org/10.18273/revuin.v17n1-2018024.

P.J. Dillon, H.E. Evans, “A comparison of phosphorus retention in lakes determined from mass balance and sediment core calculations”. Water Res. 27(4):659-668, 1993.

R.H. Findlay, L. Watling, “Prediction of benthic impact for salmon net-pens based on the balance of benthic oxygen supply and demand”. Marine Ecol. Progress Series. 155:147-157, 1997.

S. Pulatsü, “The application of a phosphorus budget model estimating the carrying capacity of Kesikk. pr. Dam Lake). Turk. J. Vet. Anim. Sci. 27:1127- 1130, 2003.

W. Casas, C. Vargas, “Capitulo 5. Modelos matemáticos de simulación de calidad del agua en Colombia. Principios y aplicaciones”. [PDF]. Disponible en: http://biblovirtual.minambiente.gov.co:3000/DOCS/MEMORIA/MMA-0013/MMA-0013-CAPITULO6.pdf

Magill, S.H.; Thetmeyer, H.; Cromey, C.J. “Settling velocity of feacal pellets of gilthead sea bream (Sparusaurata L.) and sea bass (Dicentrarchus labrax) and sensitivity analysis using measured data in deposition model”. Aquaculture. 251:295- 305, 2006.

Morales, V.V.; Morales, R. “Síntesis regional del desarrollo de la Acuicultura 1. América Latina y el Caribe. FAO Circular de Pesca No 1017/1, 2005.

Stickney, R.R. “How did we get into this mess? Junk science vs. real science”. World Aquaculture. 34:71, 2003.

Vollenweider, R.A. “The scientific basis of lake and stream eutrophication with particular reference to phosphorus and nitrogen as eutrophication factors”.Tech. Rep. OECD, Paris, DAS/CSI 68. 27:1-182, 1968.

Vallentyne, J.R. “The algal bowl lakes and man”. Dep. Environ. Fish. Mar. Serv., Ottawa. Misc. Publ. 22. 186p. 1974.

Sonzogni, W.C.; Chapra, S.C.; Armstrong, D.E.; Logan, T.J. “Bioavailability of phosphorus inputs to lakes”. J. Environ. Qual. 11:555-562, 1982.

Canosa, A.; López, L.; Morales, D.; Martínez, P. “Línea Base Microbiológica para Ajuste del POPA (Plan de Ordenamiento Pesquero y acuícola) del Embalse de Betania. Informe Técnico. Instituto

Colombiano de Desarrollo Rural Integral (Colombia). [PDF]. Disponible en: http://www.huila.gov.co/documentos/P/POPABetaniaTexto.pdf, 2008.

Kiely, G. “Fundamentos, Entornos Tecnologías y Sistemas de Gestión”, Ingeniería Ambiental. McGrawHill, 1999.

Jover Cerdá, M. “Estimación del crecimiento, tasa de alimentación y Producción de desechos en piscicultura mediante un modelo Bioenergético”. Dpto. Ciencia Animal. Laboratorio de Acuicultura, Universidad Politécnica de Valencia. [PDF]. Disponible en: file:///C:/Users/usuario/Downloads/70-120-1-SM%20(1).pdf

Larsen, D.P.; Mercier, Y.H.T. “Phosphorus retention capacity of lakes”. J. Fish. Res. Board Can. 33(8):1742-1750, 1976.

E. Mayer, H. Biomin, “Control de la calidad del agua de estanques para mejorar la producción de camarones y peces”. [En línea]. Disponible en: https://cap.auburn.edu/blog/2012/05/control-de-la-calidad-del-agua-de-estanques-para-mejorar-la-produccion-de-camarones-y-peces/?lang=es