Vol. 17 No. 2 (2018): Revista UIS Ingenierías
Articles

Modeling of the fluid structure interaction (FSI) for the design of a HAWT wind turbine

Kevin Molina
Unidades Tecnológicas de Santander
Daniel Ortega
Unidades Tecnológicas de Santander
Manuel Martínez
Universidad Industrial de Santander
William Pinto-Hernández
Universidad Industrial de Santander
Octavio Andrés González-Estrada
Universidad Industrial de Santander
Bio

Published 2018-05-30

Keywords

  • blade,
  • BEM,
  • profile design,
  • FSI,
  • wind turbine,
  • HAWT
  • ...More
    Less

How to Cite

Molina, K., Ortega, D., Martínez, M., Pinto-Hernández, W., & González-Estrada, O. A. (2018). Modeling of the fluid structure interaction (FSI) for the design of a HAWT wind turbine. Revista UIS Ingenierías, 17(2), 269–282. https://doi.org/10.18273/revuin.v17n2-2018023

Abstract

In this work, the mechanical behavior of the blade of a wind turbine is studied, analyzing the impact of the design of the blade on the amount of energy generated and its structural response as a function of the stresses induced by the air flow. In order to study the relationship between flow forces, deformations and stresses induced in the structure, a Fluid Structure Interaction (FSI) model was used. The blade structure is designed using blade element momentum theory (BEM), taking as a starting point constant properties related to the wind (speed, density, Reynolds), and the selection of a profile recommended by NACA, RISO, DU or NREL. Then, the same procedure is used for a profile designed using performance theories. Having these results for both types of blades, a comparison of the stresses and deformations due to the variations between the designed profile and the selected profile was made, analyzing the effects on the generated energy and the structural integrity of the turbine.

Downloads

Download data is not yet available.

References

P. P. Vergara-Barrios, J. M. Rey-López, G. A. Osma-Pinto, and G. Ordoñez-Plata, “Evaluación del potencial solar y eólico del campus centra de la Universidad Industrial de Santander y la ciudad de Bucaramanga, Colombia,” Rev. UIS Ing., vol. 13, no. 2, pp. 49–57, 2014.

Á. O. Díaz-Rey, J. E. González-Gil, O. A. González-Estrada, Á. Díaz Rey, J. González Gil, and O. A. González-Estrada, “Análisis de un generador de HHO de celda seca para su aplicación en motores de combustión interna,” Rev. UIS Ing., vol. 17, no. 1, pp. 143–154, 2018, doi:https://doi.org/10.18273/revuin.v17n1-2018013.

A. Rodriguez, “Análisis cfd de un álabe del último paso de una turbina de vapor,” Universidad Politecnica de Madrid, 2016.

A. Ayestarán, C. Graciano, and O. A. González-Estrada, “Resistencia de vigas esbeltas de acero inoxidable bajo cargas concentradas mediante elementos finitos,” Rev. UIS Ing., vol. 16, no. 2, pp. 61–70, Sep. 2017, doi:10.18273/revuin.v16n2-2017006.

E. E. Gaona, P. A. Mancera, C. L. Trujillo, and C. L. Trujillo Rodriguez, “Algoritmo de encaminamiento con reconfiguración de topología para red de sensores inalámbricos aplicada a una Microrred en modo ‘ Isla ,’” Rev. UIS Ing., vol. 15, no. 2, pp. 93–104, Jan. 2016, doi:https://doi.org/10.18273/revuin.v15n2-2016008.

W. J. Zhu and W. Z. Shen, “Integrated airfoil and blade design method for large wind turbines,” in International Conference on aerodynamics of Offshore Wind Energy Systems and wakes (ICOWES2013), 2013, pp. 1–10.

P. J. Moriarty and A. C. Hansen, “AeroDyn Theory Manual,” Golden, Colorado, 2005.

K. Dykes et al., “Introducing WISDEM Integrated System Modeling for Wind Turbines and Plants,” Golden, Colorado, 2014.

C. Phelps and J. Singleton, “Wind Turbine Blade Design,” Ithaca, NY, 2015.

C. Stout et al., “Efficiency Improvement of Vertical Axis Wind Turbines with an Upstream Deflector,” Energy Procedia, no. April, pp. 1–10, 2016.

A. Lecuona Neumann, La Energía Eólica: Principios básicos y tecnología. Madrid: Universidad Carlos III de Madrid, 2002.

R. van Rooij and N. Timmer, “Design of Airfoils for Wind Turbine Blades,” Delft, 2004.

F. Bertagnolio, N. Sorensen, J. Johansen, and P. Fuglsang, “Wind turbine airfoil catalogue. Risø-R-1280 (EN),” Roskilde, Denmark, 2001.

M. Hepperle, “JavFoil User’s Guide.” pp. 1–45, 2014.

D. Almazo, M. Toledo, M. Vega del Carmen, J. Abugaber, O. José Pineda, and A. Reyes, “Selección y diseño de hélices,” in 15 Congreso Nacional de Ingeniería Electromecánica y de Sistemas, 2015, pp. 1–6.

G. Ingram, “Wind Turbine Blade Analysis using the Blade Element Momentum Method. Version 1.1,” Durham, 2011.

Nordex, “N60 / 1300 kW. Long-term experience all over the world.” Nordex Brochure.

R. A. Bastianon, “Cálculo Y Diseño De la Hélice Óptima Para Turbinas Eólicas,” Buenos Aires, 2008.

R. Gasch and J. Twele, Wind Power Plants: Fundamentals, Design, Construction and Operation, 2nd ed. Berlin, Heidelberg: Springer, 2012.

A. Khare, A. Singh, and K. Nokam, “Best practices in grid generation for CFD application using HyperMesh,” in ATC: HyperWorks Technology Conference 2009, 2009, pp. 1–10.

IDEAM, “Atlas Interactivo - Vientos,” 2015.

M. P. Rincón, “Parque eólico Jepirachi, Colombia | EJAtlas,” 2014.