Environmental and economic assessment of the co-firing of the coal-bagasse mixture in the Colombian sugarcane mills
Published 2019-02-06
Keywords
- Electricity generation,
- co-firing coal-bagasse,
- simulation platform,
- Biorefinery,
- GHG emissions
- ethanol industry ...More
How to Cite
Abstract
Energy generation is key to any country’s development, and the threats to energy supply have led the Colombian government to establish national policies that stimulate energy generation projects. In response, this manuscript reports the economic impact and the GHG emission that have been simulated in this study to evaluate the co-firing of the coal-bagasse mixture in the cogeneration systems of the ethanol industry in the Cauca River Valley in Colombia as an opportunity to increase the economic benefits due to the increase of electricity sell to the national grid in the strong dry seasons. This study was carried out using the Virtual Sugarcane Biorefinery (VSB) modeling software employed for the simulation of agricultural and industrial parameters in integrated alternatives for the sugarcane industry, which was adjusted to the Colombian conditions to allow simulating the current electricity production in the sugarcane mills in the assessed region. The economic assessment of the co-firing process in the cogeneration system demonstrates that this industrial process represents an opportunity to increase the economic benefits by about 26%. However, the coal combustion in the boiler generates about 54% of the total GHG emissions for the consumption of coal, whereas the burning of bagasse corresponds to only 5%.
Downloads
References
CREG, “Estudio sobre mercados internacionales de biocombustibles con énfasis en alcohol anhidro y biodiésel a partir de palma africana. Informe final Comisión de regulación de Energía y gas 24 de agosto de 2015”, Bogotá, 2015.
ASOCAÑA, “Aspectos Generales del Sector Azucarero Colombiano 2015-2016”, 2016.
BIOENERGY, “Producido, Bioenergy Noticias: Más de 15 millones de litros de etanol”, BIOENERGY, 2017. [Online]. Available: http://www.bioenergy.com.co/SitePages/Noticia.aspx?I dElemento=38.
Ingenio Providencia, “Procesos Ingenio Providencia”, Cali, 2016.
Ingenio Incauca, “Procesos del Ingenio Incauca”, Cali, 2016.
J. M. Rincón, M. A. Vera, P. Guevara, eta S. Duarte, “Cofiring in sugar mills industry in Colombia,” VGB Power Tech, vol.. 2015–2018, 2017.
UPME, “Capacidad instalada de autogeneración y cogeneración en sector de industria, petróleo, comercio y público del país informe final presentado a: Unidad De Planeación Minero Energética-UPME”, Unidad Planeación Min. Energética, 2014.
M. O. S. Dias, M. P. Da Cunha, R. MacIel Filho, A. Bonomi, C. D. F. Jesus, eta C. E. V Rossell, “Simulation of integrated first and second generation bioethanol production from sugarcane: Comparison between different biomass pretreatment methods”, J. Ind. Microbiol. Biotechnol., vol. 38, no. 8, pp. 955– 966, 2011. doi: 10.1007/s10295-010-0867-6
T. de F. Cardoso et al., “Technical and economic assessment of trash recovery in the sugarcane bioenergy production system,” Sci. Agric., vol. 70, no. 5, pp. 353–360, 2013. doi: 10.1590/S0103-90162013000500010
L. S. To, V. Seebaluck, eta M. Leach, “Future energy transitions for bagasse cogeneration: Lessons from multi-level and policy innovations in Mauritius”, Energy Res. Soc. Sci., vol. 35, pp. 68-77, 2018. doi: 10.1016/j.erss.2017.10.051
M. K. Chauhan, Varun, S. Chaudhary, S. Kumar, eta Samar, “Life cycle assessment of sugar industry: A review,” Renew. Sustain. Energy Rev., vol. 15, no. 7, pp. 3445–3453, 2011. doi: 10.1016/j.rser.2011.04.033
INDC, “Intended Nationally Determined Contribution. Colombia”, Bogotá, 2015.
UPME, Integración de las energías renovables no convencionales en Colombia. Bogotá, 2015.
PROCOLOMBIA, “Electric Power in Colombia. Power Generation – 2015,” 2015.
XM, “Informe Seguimiento Cogeneradores Resolución CREG 05 de 2010”, 2015.
J. R. Paredes eta J. J. Ramírez, “Variable Renewable Energies and Their Contribution to Energy Security: Complementarity in Colombia,” Banco Interamericano de Desarrollo, 2017.
Colombia Reports, “Colombia reports: fact sheets”. Bogotá, pp. 4, 2015.
Business Wire, “Fitch:El Nino Testing Colombia Electricity Regulatory Framework,” 2015.
Ley1715 mayo de 2014, Congreso de Colombia, Pres. la Repub., May 26, 2014.
UPME, “El Carbón Colombiano. Fuente de Energía para el mundo,” 2005.
A. Paredes eta L. Bermúdez, “Eficiencia energética enfocada al medio ambiente en el Ingenio Providencia S.A.”, Tecnicaña, vol. 21, pp. 607–611, 2009.
S. Arango, A. Yoshioka, eta V. Gutiérrez, Análisis del ambiente competitivo del Cluester Bioindustrial del Azucar en el Valle Geográfico del río Cauca. Cali: Sello Editorial Javeriano, 2011.
A. Bonomi, O. Cavalett, M. P. Da Cunha, eta M. Lima, Virtual Biorefinery, An Optimization Strategy for Renewable Carbon Valorization. Springer International Publishing, 2016.
O. Cavalett et al., “Sugarcane processing for ethanol and sugar in Brazil”, Environ. Dev., vol. 15, pp. 35–51, 2015.
Cenicaña, “Informe anual 2014”, Cent. Investig. la Caña Azúcar Colombiano, 2014.
Cenicaña, “Cenicaña - Proceso de obtención de azúcar y etanol”, 2015.
A. Milanez et al., “De promessa a realidade : como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar - uma avaliação do potencial competitivo e sugestões de política pública,” BNDES Setorial, no. 41, pp. 237-294, 2015.
J. Moncada, M. M. El-Halwagi, eta C. A. Cardona, “Techno-economic analysis for a sugarcane biorefinery: Colombian case”, Bioresour. Technol., vol. 135, pp. 533–543, 2013.
Fedebiocombuctibles, Precios de Alcohol Carburante (ethanol), 2017. [Online]. Available: http://www.fedebiocombustibles.com/v3/estadisticaprecios-titulo-Alcohol_Carburante_(Etanol).htm. [Accessed: 19-apr-2018].
XM, “Informe Integrado 2015”, 2015.
A. Damodaran, “Estimating discount rates”, in Damodaran on Valuation: Security Analysis for Investment and Corporate Finance, Second Edition, 2012, pp. 1–66.
J. H. Sánchez, “The discount rate in emerging countries-application of the Colombian case”, Rev. EAN, vol. 69, pp. 120–134, 2010.
Environmental management — Life cycle assessment — Goal and scope definition — Inventory analysis, ISO 14041:1998, Int. Organ. Stand., 1998.
M. M. Goedkoop, R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. Van Zelm, “ReCiPe 2008,” Minist. Housing, Spat. Plan. Environ., pp. 1–44, 2009.
Colombia Minagricultura, “Cadena Productiva de la Caña de Azúcar,” 2014.
Consorcio CUE, “Estudio ACV – Impacto Ambiental”, in Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia, Medellín: Banco Interamericano de Desarrollo (BID) – Ministerio de Minas y Energía, 2012, pp. 203.
BNDES and CGEE, “Bioetanol de cana-deaçúcar : energia para o desenvolvimento sustentável”, 2008.
A Low-Carbon Fuel Standard for California. California Energy Commissión, 2010.
EPA Lifecycle Analysis of Greenhouse Gas Emissions from Renewable Fuels, EPA- Environmental Protection Agency, 2010.
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009, European Parliament, vol. 140, no. 16, pp. 16–62, 2009.
A. Becerra-Quiroz, A. Buitrago-Coca, eta P. Pinto-Baquero, “Sostenibilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca, Colombia”, Ing. Solidar., vol. 12, no. 20, pp. 133, 2016. doi: 10.16925/in.v12i20.1548
“Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia”, CUE- Consorcio Universitario Euroamericano, Colombia, 2012 [En línea]. Disponible en: https://www.fedebiocombustibles.com/files/EvaluacionDelCicloDeVidaDeLaCadenaDeProduccionDeBiocombustiblesEnColombia-MarcelGauch.pdf