Vol. 18 No. 2 (2019): Revista UIS Ingenierías
Articles

Scale exponents of longitudinal and transverse structure functions in homogeneous and isotropic turbulence generated in a wind tunnel

Laura Velásquez-García
Universidad EAFIT

Published 2019-02-06

Keywords

  • active grid,
  • homogenous turbulence,
  • isotropic turbulence,
  • structure function,
  • passive grid,
  • hot wire anemometry,
  • wind tunnel
  • ...More
    Less

How to Cite

Velásquez-García, L. (2019). Scale exponents of longitudinal and transverse structure functions in homogeneous and isotropic turbulence generated in a wind tunnel. Revista UIS Ingenierías, 18(2), 89–102. https://doi.org/10.18273/revuin.v18n2-2019008

Abstract

By using an active grid and a passive grid, a homogenous and isotropic turbulent flow was characterized by studying its longitudinal structure functions and transverse 〉 and   where u is the longitudinal velocity fluctuation, and v is the fluctuation of the transverse velocity, as a function of the Reynolds number  for orders, n, between 2 and 8. The turbulence was generated in a wind tunnel with 91 × 91 cm2 in cross-section and 9,14 m in length. The velocity field was measured with hot-wire anemometry with TSI 1241 and TSI 1210 sensors manufactured with an alloy of platinum and rhodium of 2,54  diameter. The results indicated that the exponents of scale vary according to ; if increases, the difference between the exponents of the structure functions and the exponents predicted by the K41 theory also increases.

Downloads

Download data is not yet available.

References

A. N. Kolmogorov, “Dissipation of Energy in Locally Isotropic Turbulence,” Akad. Nauk SSSR Dokl., vol. 32, p. 16, 1941.

H. Makita and K. Sassa, “Active Turbulence Generation in a Laboratory Wind Tunnel,” in Advances in Turbulence 3, 1991, pp. 497–505. doi: 10.1007/978-3-642-84399-0_54

J. C. Isaza, R. Salazar, and Z. Warhaft, “On grid-generated turbulence in the near- and far field regions,” Journal of Fluid Mechanics, vol. 753, pp. 402–426, 2014. doi: 10.1017/jfm.2014.375

K. Yoon and Z. Warhaft, “The evolution of grid-generated turbulence under conditions of stable thermal stratification,” J. Fluid Mech., vol. 215, pp. 601–638, 1990. doi: 10.1017/S0022112090002786

L. Mydlarski and Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech., vol. 320, pp. 331–368, 1996. doi: 10.1017/S0022112096007562

H. H. Bruun, Hot wire anemometry : principles and signal analysis. Oxford University Press, 1995.

P.-Å. Krogstad and P. A. Davidson, “Freely decaying, homogeneous turbulence generated by multi-scale grids,” J. Fluid Mech., vol. 680, pp. 417–434, 2011. doi: 10.1017/jfm.2011.169

A. Sirivat and Z. Warhaft, “The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence,” J. Fluid Mech., vol. 128, no. 1, p. 323, Mar. 1983. doi: 10.1017/S0022112083000506

P.-Å. Krogstad and P. A. Davidson, “Is grid turbulence Saffman turbulence?,” J. Fluid Mech., vol. 642, pp. 373–394, 2010. doi: 10.1017/S0022112009991807

R. J. Hearst and P. Lavoie, “Decay of turbulence generated by a square-fractal-element grid,” J. Fluid Mech., vol. 741, pp. 567–584, 2014. doi: 10.1017/jfm.2013.684

Ö. Ertunç, N. Özyilmaz, H. Lienhart, F. Durst, and K. Beronov, “Homogeneity of turbulence generated by static-grid structures,” J. Fluid Mech., vol. 654, pp. 473–500, 2010. doi: 10.1017/S0022112010000479

P. C. Valente and J. C. Vassilicos, “The decay of turbulence generated by a class of multiscale grids,” J. Fluid Mech., vol. 687, pp. 300–340, 2011. doi: 10.1017/jfm.2011.353

A. A. Townsend and G. K. Batchelor, “Decay of isotropic turbulence in the initial period,” Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 193, no. 1035, pp. 539–558, 1948. doi: 10.1098/rspa.1948.0061

L. F. G. Simmons and C. Salter, “Experimental investigation and analysis of the velocity variations in turbulent flow,” Proc. R. Soc. London A Math. Phys. Eng. Sci., vol. 145, no. 854, pp. 212–234, 1934. doi: 10.1098/rspa.1934.0091

R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, “Extended self-similarity in turbulent flows,” Phys. Rev. E, vol. 48, no. 1, pp. R29--R32, Jul. 1993. doi: 10.1103/PhysRevE.48.R29

T. Gotoh, D. Fukayama, and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation,” Phys. Fluids, vol. 14, no. 3, pp. 1065–1081, 2002. doi: 10.1063/1.1448296

X. Shen and Z. Warhaft, “Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence,” Phys. Fluids - PHYS FLUIDS, vol. 14, pp. 370–381, 2002. doi: 10.1063/1.1421059