Vol. 18 Núm. 3 (2019): Revista UIS Ingenierías
Artículos

Estrategias de eficiencia energética en vehículos livianos del transporte por carretera en Colombia

Juan Castillo
Universidad Tecnológica de Pereira
Álvaro Restrepo
Universidad Tecnológica de Pereira
Juan Tibaquirá
Universidad Tecnológica de Pereira
Luis Quirama
Universidad Tecnológica de Pereira

Publicado 2019-05-03

Palabras clave

  • eficiencia,
  • metodología,
  • energéticos,
  • rendimiento,
  • consumo

Cómo citar

Castillo, J., Restrepo, Álvaro, Tibaquirá, J., & Quirama, L. (2019). Estrategias de eficiencia energética en vehículos livianos del transporte por carretera en Colombia. Revista UIS Ingenierías, 18(3), 129–140. https://doi.org/10.18273/revuin.v18n3-2019013

Resumen

El sector de transporte por carretera en Colombia es el responsable del 44 % del consumo de energéticos. Igualmente, se clasifica como el principal consumidor de los combustibles derivados del petróleo y el sector productivo con mayores pérdidas de energía. En este estudio se presentan estrategias tecnológicas y operacionales que mejoran el rendimiento de los vehículos livianos. Además, se identifican metodologías encaminadas a la medición del consumo energético y emisiones de los vehículos y se evalúa la conducción eficiente como estrategia de eficiencia energética en Colombia. Como resultado, se implementó la metodología de pruebas basada en la Regulación CFR 40 de los Estados Unidos y COPANT en un laboratorio del país, y se evaluó mediante el aseguramiento metrológico el consumo de combustible en un vehículo liviano de combustión interna. Adicionalmente, empleando conducción eficiente se identificó un aumento en el rendimiento del 15 % y 20 % en pruebas de laboratorio y ruta respectivamente.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] K. Ben Abdallah, M. Belloumi, and D. De Wolf, “International comparisons of energy and environmental efficiency in the road transport sector,” Energy, vol. 93, no. 2, pp. 2087–2101, 2015. doi: 10.1016/j.energy.2015.10.090.

[2] R. K. Bose and V. Srinivasachary, “Policies to reduce energy use and environmental emissions in the transport sector: A case of Delhi city,” Energy Policy, vol. 25, no. 14–15, pp. 1137–1150, 1997. doi: 10.1016/S0301-4215(97)00106-7.

[3] L. Michaelis and O. Davidson, “GHG mitigation in the transport sector,” Energy Policy, vol. 24, no. 10–11, pp. 969–984, 1996. doi: 10.1016/S0301-4215(96)80361-2.

[4] Á. I. Cadena, O. V. González, O. Báez, UPME, and MinMinas, “Eficiencia Energetica En Colombia Estrategias y metas,” Bogotá, 2014. [En línea]. Disponible en: https://docplayer.es/13554352-Eficiencia-energetica-en-colombia-estrategias-y-metas.html

[5] Agencia Chilena de Eficiencia Energética and W. Vidal Geisel, “Guía de Conducción Eficiente,” 2013. [En línea]. Disponible en: http://conduccioneficiente.cl/conduccion-eficiente/wp-content/uploads/2016/07/Guia_particulares.pdf

[6] C. Daraio, M. Diana, F. Di Costa, C. Leporelli, G. Matteucci, and A. Nastasi, “Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research,” Eur. J. Oper. Res., vol. 248, no. 1, pp. 1–20, 2016. doi: 10.1016/j.ejor.2015.05.059.

[7] X. Yan and R. J. Crookes, “Reduction potentials of energy demand and GHG emissions in China’s road transport sector,” Energy Policy, vol. 37, no. 2, pp. 658–668, 2009. doi: 10.1016/j.enpol.2008.10.008.

[8] G. R. Timilsina and A. Shrestha, “Transport sector CO2 emissions growth in Asia: Underlying factors and policy options,” Energy Policy, vol. 37, no. 11, pp. 4523–4539, 2009. doi: 10.1016/j.enpol.2009.06.009.

[9] P. Maniatopoulos, J. Andrews, and B. Shabani, “Towards a sustainable strategy for road transportation in Australia: The potential contribution of hydrogen,” Renew. Sustain. Energy Rev., vol. 52, pp. 24–34, 2015. doi: 10.1016/j.rser.2015.07.088.

[10] CTS Embarq México, “Documento base para la elaboración de la Estrategia de Transición para promover el uso de Tecnologías y Combustibles más Limpios” en el tema de ahorro de energía en transporte,” 2015.

[11] J. Barboza Mariano, “Eficiencia Energética en Brasil,” Montevideo, Uruguay, 2012.

[12] C. Gavilán Labra, “Etiquetado vehicular en Chile y otras medidas de eficiencia energtica para vehículos particulares,” 2013.

[13] J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,” Energy Policy, vol. 38, no. 2, pp. 762–769, 2010. doi: 10.1016/j.enpol.2009.10.021.

[14] J. Van Mierlo, G. Maggetto, E. Van de Burgwal, and R. Gense, “Driving style and traffic measures-influence on vehicle emissions and fuel consumption,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 218, no. 1, pp. 43–50, Jan. 2004. doi: 10.1243/095440704322829155..

[15] S.-H. Ho, Y.-D. Wong, and V. W.-C. Chang, “What can eco-driving do for sustainable road transport? Perspectives from a city (Singapore) eco-driving programme,” Sustain. Cities Soc., vol. 14, pp. 82–88, 2015. doi: 10.1016/j.scs.2014.08.002.

[16] M. Andrejić, N. Bojović, and M. Kilibarda, “A framework for measuring transport efficiency in distribution centers,” Transp. Policy, vol. 45, pp. 99–106, 2016. doi: 10.1016/j.tranpol.2015.09.013.

[17] J. Wu, Q. Zhu, J. Chu, H. Liu, and L. Liang, “Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach,” Transp. Res. Part D Transp. Environ., vol. 48, pp. 460–472, 2016. doi: 10.1016/j.trd.2015.08.001.

[18] F. Orsi, M. Muratori, M. Rocco, E. Colombo, and G. Rizzoni, “A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost,” Appl. Energy, vol. 169, pp. 197–209, 2016. doi: 10.1016/j.apenergy.2016.02.039.

[19] J. Pongthanaisawan and C. Sorapipatana, “Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options,” Appl. Energy, vol. 101, pp. 288–298, 2013. doi: 10.1016/j.apenergy.2011.09.026.

[20] M. Ehsani, A. Ahmadi, and D. Fadai, “Modeling of vehicle fuel consumption and carbon dioxide emission in road transport,” Renew. Sustain. Energy Rev., vol. 53, pp. 1638–1648, 2016. doi: 10.1016/j.rser.2015.08.062.

[21] G. Helfand et al., “Searching for hidden costs: A technology-based approach to the energy efficiency gap in light-duty vehicles,” Energy Policy, vol. 98, pp. 590–606, 2016. doi: 10.1016/j.enpol.2016.09.014.

[22] R. A. Simmons, G. M. Shaver, W. E. Tyner, and S. V Garimella, “A benefit-cost assessment of new vehicle technologies and fuel economy in the U.S. market,” Appl. Energy, vol. 157, pp. 940–952, 2015. doi: 10.1016/j.apenergy.2015.01.068.

[23] S. Skippon, S. Veeraraghavan, H. Ma, P. Gadd, and N. Tait, “Combining technology development and behaviour change to meet CO2 cumulative emission budgets for road transport: Case studies for the USA and Europe,” Transp. Res. Part A Policy Pract., vol. 46, no. 9, pp. 1405–1423, 2012. doi: 10.1016/j.tra.2012.05.021.

[24] V. Y. Ministerio De Ambiente And Desarrollo Territorial de Colombia, Resolución Número 910. Colombia: http://www.bogotaturismo.gov.co/sites/intranet.bogotaturismo.gov.co/files/RESOLUCI%C3%93N%20910%20DE%202008.pdf, 2008.

[25] Asociación Colombiana de Vehículos Automotores- ANDEMOS, “Informe Vehículos Diciembre,” 2017.

[26] Asociación Colombiana de Vehículos Automotores- ANDEMOS, “Informe Vehículos Junio,” 2018.

[27] Grupo de Estudios Económicos and Superintendencia de Industria y Comercio, “Estudios de Mercado Estudio del Sector Automotor en Colombia,” 2012 [En línea]. Disponible en: http://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Economicos/Estudios_Economicos/Estudios_Mercado/Estudiosobreelsectorautomotor.pdf

[28] BBVA-Research, “Situación Automotriz 2018 Colombia,” 2018 [En línea]. Disponible en: https://webcache.googleusercontent.com/search?q=cache:wsHOtfFJTTcJ:https://www.bbvaresearch.com/wp-content/uploads/2018/03/SituacionAutomotriz2018.pdf+&cd=3&hl=es&ct=clnk&gl=co

[29] DELPHI, “Worldwide Emissions Standards Passenger Cars and Light Duty,” 2016.

[30] ABNT - Associação Brasileira de Normas Técnicas, Veículos rodoviários automotores leves - Medição do consumo de combustível - Método de ensaio. abntcatalogo.com.br, 2017, p. 15.

[31] ABNT - Associação Brasileira de Normas Técnicas, Veículos rodoviários automotores leves — Determinação de hidrocarbonetos, monóxido de carbono, óxidos de nitrogênio, dióxido de carbono e material particulado no gás de escapamento. 2012, p. 49.

[32] BIPM et al., Evaluation of measurement data-Supplement 1 to the “Guide to the expression of uncertainty in measurement”-propagation of distributions using a Monte Carlo Method, 1st ed. JCGM, 2008.

[33] ANDI and FENALCO, “Informe Del Sector Automotor A Septiembre De 2015,” 2015.

[34] United States Department of Energy and Office of Energy Efficiency and Renewable Energy, “Used Car Fuel Economy Label.” [Online]. Available: https://www.fueleconomy.gov/feg/UsedCarLabel.jsp. [Accessed: 30-Jul-2018].

[35] S. Birrell, J. Taylor, A. McGordon, J. Son, and P. Jennings, “Analysis of three independent real-world driving studies: A data driven and expert analysis approach to determining parameters affecting fuel economy,” Transp. Res. Part D Transp. Environ., vol. 33, pp. 74–86, 2014. doi: 10.1016/j.trd.2014.08.021.

[36] H. Kato, R. Ando, Y. Kondo, T. Suzuki, K. Matsuhashi, and S. Kobayashi, “Comparative measurements of the eco-driving effect between electric and internal combustion engine vehicles,” in 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014, 2014, pp. 1–5. doi: 10.1109/EVS.2013.6914843

[37] M. Sivak and B. Schoettle, “Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy,” Transp. Policy, vol. 22, pp. 96–99, 2012. doi: 10.1016/j.tranpol.2012.05.010.

[38] V. Basaric, M. Jambrovic, M. Milicic, T. Savković, D. Basaric, and V. Bogdanović, “Positive effects of eco-driving in public transport: A case study of Novi Sad,” Therm. Sci., vol. 21, p. 160, Jan. 2016. doi: 10.2298/TSCI150219160B.

[39] M. Rutty, L. Matthews, J. Andrey, and T. Del Matto, “Eco-driver training within the City of Calgary’s municipal fleet: Monitoring the impact,” Transp. Res. Part D Transp. Environ., vol. 24, pp. 44–51, 2013. doi: 10.1016/j.trd.2013.05.006.

[40] IDAE, “Manual de conducción eficiente para conductores de vehículos industriales,” Madrid, 2006.

[41] G. Ombach and J. Junak, “Weight and efficiency optimization of auxiliary drives used in automobile,” in The XIX International Conference on Electrical Machines-ICEM 2010, 2010, pp. 1–6.

[42] S. Kobayashi, S. Plotkin, and S. K. Ribeiro, “Energy efficiency technologies for road vehicles,” Energy Effic., vol. 2, no. 2, pp. 125–137, 2009. doi: 10.1007/s12053-008-9037-3.

[43] J. King, The King review of low-carbon cars, Part I: The potential for CO2 reduction. London: King, 2007.

[44] G. Fontaras and Z. Samaras, “On the way to 130gCO2/km—Estimating the future characteristics of the average European passenger car,” Energy Policy, vol. 38, no. 4, pp. 1826–1833, 2010. doi: 10.1016/j.enpol.2009.11.059.

[45] J.-C. Pandazis and A. Winder, “Study of Intelligent Transport Systems for reducing CO 2 emissions for passenger cars,” 2015.

[46] European Conference Of Ministers Of Transport Ecmt, “making cars more fuel efficient,” 2005.