Mechanical and microstructural behavior of AlMgSi alloy for electrical conductors
Published 2019-02-07
Keywords
- AlMgSi alloy,
- plastic deformation,
- natural aging,
- mechanical properties,
- microstructure
How to Cite
Abstract
The purpose of this work is to evaluate the mechanical properties and the microstructural characteristics of an AlMgSi alloy subjected to a drawing process. Wire and wire samples were analyzed by spectrometry techniques, tensile and hardness tests, optical microscopy and scanning electron with EDX. It is confirmed that the alloy complies with the chemical specifications of the AA 6201, and it was verified that the microstructural changes that occur in the material during the cold forming and natural aging impact its mechanical behavior, suggesting a close relationship between the mechanical strength, the ductility and the hardness with the characteristics of the present phases. It revealed a textured microstructure of elongated grains and the presence of precipitate particles, of which its morphology and distribution depend on the longitudinal and transverse directions with regard to the direction of material flow, evidencing that the alloy hardens due to plastic deformation and precipitation.
Downloads
References
P. Mukhopadhyay, “Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys”, International Scholarly Research Network ISRN Metallurgy, vol. 2012, pp. 2-15, 2012. doi: 10.5402/2012/165082.
M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, R. Valiev, “Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al 6101 Alloy Processed via ECAP-Conform”, Rev. Metals, no. 5, pp. 2148-2164, 2015. doi: 10.3390/met5042148
B. Moharana, B. Kumar, “Breakage Analysis of Aluminum wire rod in Drawing Operation”, International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 12, pp. 971-981, 2017.
A. Mazilkin, B. Straumal, S. Protasova, O. Kogtenkova, R. Valiev, “Structural Changes in Aluminum Alloys upon Severe Plastic Deformation”, Physics of the Solid State, vol. 49, n.° 5, pp. 868–873, 2007. doi: 10.1134/S1063783407050113
D. Padmavathi, “Potential Energy Curves & Material Properties”, Materials Sciences and Applications, no. 2, pp. 97-104, 2011. doi: 10.4236/msa.2011.22013
J. Li1, Z. Zhang, C. Li, “Some useful approximations for wrought aluminum alloys based on monotonic tensile properties and hardness”, Mat.-wiss. u. Werkstofftech, vol. 49, no. 1. pp. 89–100, 2018. doi: 10.1002/mawe.201700016
P.L. Mangonon, Ciencia de mater2iales Seleccion y Diseño. México: Pearson - Education, 2001.
G- Venkateshwarlu, A. Prasad, K. Ramesh, “Evaluation of Mechanical Properties of Aluminium Alloy AA 6061(HE-20)”, International Journal of Current Engineering and Technology, special Issue, no. 2, pp. 295-297, 2014.
R. Kwesi, N. Kwabena, Y. Fang, “Using the Hollomon Model to Predict Strain-Hardening in Metals”, American Journal of Materials Synthesis and Processing, vol. 2, no.1, pp. 1-4, 2017. doi: 10.11648/j.ajmsp.20170201.11
M. Mišović, N. Tadić, D. Lučić, “Deformation characteristics of aluminium alloys”, Građevinar, vol. 68, no. 3, pp.179-189, 2016. doi: 10.14256/JCE.1457.2015
P. Jena, S. Savioa, K. Kumara, V. Madhua, R. Mandalb, A. Singha, “An experimental study on the deformation behavior of Aluminium armour plates impacted by two different non-deformable projectiles”. Procedia Engineering, vol.173, pp. 222 – 229, 2017. doi: 10.1016/j.proeng.2016.12.001
M. Gedeon, “Strain Hardening-Materion Brush Performance Alloys # 50”, Technical Tidbits, pp. 1-2, 2013.
S. Adeosun, O. Sekunowo, S. Balogun, L. Osoba, “Effect of Deformation on the Mechanical and Electrical Properties of Aluminum-Magnesium Alloy”, Journal of Minerals & Materials Characterization & Engineering, vol. 10, no. 6, pp.553-560, 2011. doi: 10.4236/jmmce.2011.106042
J. Asensio, B. Suárez, “Análisis cuantitativo y caracterización morfológica de la aleación 6063. Diferencias microestructurales y mecánicas entre la superficie y el núcleo de barras cilíndricas de colada semicontinua”, Rev de Metalurgia, vol. 48, no. 3, pp. 199-212, 2012
Standard Specification Aluminum Alloy 6201 – T81 and 6201 T83 Wire for Electrical Purposes, ASTM B398 / B398M -15, 2015.
B. Smyrak, “Influence of Temperature and Time of Ageing on 6201 grade ALMgSi Wire and Rod”, Rev. Metals, vol. 18-20, no. 5, pp. 1-6, 2011.
H. Jimenez, R. Castillo, S. Yuniz, C. Martínez, “Oprtimización del ciclo de tratamiento termico de la aleacion 6201 de la empresa CVG Cabelum”, en I Congreso Cubano de Ingeniería Mecánica y Metalurgia, La Habana, 2008, pp. 1-12.
R. Kalomboa, J. Martíneza, J. Ferreiraa, C.. da Silva, J. Araújoa, “Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: tests and analysis”, Procedia Engineering, vol. 133, pp. 223-232, 2015. doi: 10.1016/j.proeng.2015.12.662
J. Pereira, L. Duran, D. Van Deventer, J. Zambrano, “Comportamiento mecanico a torsion de la aleacion de aluminio AA6061 tratada termicamente”. Revista Latinoamericana de Metalurgia y Materiales, vol. S1, no. 1, pp. 183-190, 2009.
D. F. Bonilla, “Caracterización mecánica y electrica de la aleación de aluminio 6201 de uso en la fabricación de cables eléctricos”, trabajo de fin de grado, Facultad de Ingenieria, Programa de Ingenieria de Materiales, Universidad de San Juan Bentura, 2015.
N.E. Dowling, Mechanical Behavior of Materials. New Jersey, USA: Prentica Hall, 1999.
R. Gupta, Ch. Mathew, P. Ramkumar, “Strain Hardening in Aerospace Alloys”, Frontier in Aerospace Engineering, vol. 4, no. 1, 2015. doi: 10.12783/fae.2015.0401.01
Z. Martinova, “Preaging Effects in Thermomechanicaly Treated 6201 Aluminum Alloy”. En Proceedings of 3rd BMC, pp. 161-166, 2003
Z. Martinova, G. Zlateva, “Microstructure development during thermomechanical treatment of AlSiMg alloy”, J. Min. Met., 38 (3-4) B, pp. 153-162, 2002.