Articles
Computer application for extraocular muscle analysis based on a parallel kinematics model of the eye
Published 2019-05-09
Keywords
- Eyeball movement,
- extraocular muscles,
- inverse kinematics,
- isodeformation curves,
- parallel kinematics mechanisms
How to Cite
Trujillo-Suárez, C. A., & Jaramillo-Osorio, A. F. (2019). Computer application for extraocular muscle analysis based on a parallel kinematics model of the eye. Revista UIS Ingenierías, 18(3), 169–174. https://doi.org/10.18273/revuin.v18n3-2019017
Abstract
We propose a mechanical model of eyeball movements based on a parallel kinematics mechanism, where the extraocular muscles can be replaced by cables. Based on this framework, we present the anatomical conditions for the eyeball movement, analyze its inverse kinematics to obtain isodeformation curves of extraocular muscles. A computer application was developed that simulates eyeball movement and displays the associated deformation curves in real time. The results are a novel contribution to the modeling of biomechanical systems using kinematics theory; the computer application is a useful resource for medical and clinical training.
Downloads
Download data is not yet available.
References
[1] D. Tweed, T. Vilis, “Geometric relations of eye position and velocity vectors during saccades,” Vision research, vol. 30, no. 1, pp.111–27, 1990. doi: 10.1016/0042-6989(90)90131-4
[2] K.W. Wright, “Anatomy and physiology of eye movements,” In: Pediatric Ophthalmology and Strabismus, New York: Springer; 2003, pp. 125–43. doi: 10.1007/978-0-387-21753-6_8
[3] T. Haslwanter, “Mathematics of three-dimensional eye rotations,” Vision research, vol. 35, no. 12, pp. 1727–39, 1995. doi: 10.1016/0042-6989(94)00257-M
[4] E. Bayro-Corrochano, “Modeling the 3d kinematics of the eye in the geometric algebra framework,” Pattern recognition, vol. 36, no. 12, pp. 2993–3012, 2003. doi: 10.1016/S0031-3203(03)00180-8
[5] G. Cannata and M. Maggiali, “Models for the Design of Bioinspired Robot Eyes,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 27-44, 2008. doi: 10.1109/TRO.2007.906270
[6] X.Y. Wang, Y. Zhang, X.J. Fu, G.S. Xiang, “Design and kinematic analysis of a novel humanoid robot eye using pneumatic artificial muscles,” Journal of Bionic Engineering, vol. 5, no. 3, pp. 264–270, 2008. doi: 10.1016/S1672-6529(08)60034-7
[7] L. Luo, N. Koyama, K. Ogawa, H. Ishiguro, “Robotic eyes that express personality,” Advanced Robotics, vol.33, 2019. doi: 10.1080/01691864.2019.1588164
[8] L. Li, H. Godaba, H. Ren and J. Zhu, “Bioinspired Soft Actuators for Eyeball Motions in Humanoid Robots,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 100-108, 2019. doi: 10.1109/TMECH.2018.2875522
[9] M. M. Khan and C. Chen, “Design of a Single Cam Single Actuator Multiloop Eyeball Mechanism,” in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 2018, pp. 1143-1149. doi: 10.1109/HUMANOIDS.2018.8625069
[10] B. J. Chen, S. F Wen, G.H. Liu, Y.Y Lee, W. P. Shih, C. L. Dai, C. A. Dai, Y.C. Hu, “Humanoid eye robot with angle control and image registration,” in 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Phuket, 2011, pp. 1177-1182. doi: 10.1109/ROBIO.2011.6181447
[11] P. Boeder, “Co-operative action of extraocular muscles,” Br J Ophthalmol., vol. 46, no. 7, pp. 397–403, 1962. doi: 10.1136/bjo.46.7.397
[12] J. Miller, D. Pavlovski, I. Shaemeva, “Orbit 1.8 Gaze Mechanics Simulation - User’s Manual,” Eidactics, San Francisco, 1999 [Online]. Available: http://www.eidactics.com/projects/ooi. [Accessed: Oct.- 1-2018]
[13] J. P. Merlet. Parallel Robots. Netherlands: Springer, 2006.
[14] C. A. Trujillo, “Inverse kinematics of the eye,” in 1er. Congreso Internacional de Tecnologías Avanzadas de Mecatrónica, Diseño y Manufactura – AMDM, Paper TCA-ROB112, 2012.
[15] W. E. Krewson, “The action of the extraocular muscles: a method of vector-analysis with computations,” Transactions of the American Ophthalmological Society, vol. 48, pp. 443–86, 1950
[16] O. Bottema, B. Roth, Theoretical kinematics. Dover Publications Inc., 1990.
[17] J. M. McCarthy, Introduction to theoretical kinematics. MIT press, 1990.
[18] H. Mabie, C, Reinholtz, Mecanismos y dinámica de maquinaria. México: Limusa-Wiley, 2008.
[19] K. Hepp, V. Henn, “ISO-frequency curves of oculomotor neurons in the rhesus monkey,” Vision research, vol. 25, no. 4, pp. 493–499, 1985.
[2] K.W. Wright, “Anatomy and physiology of eye movements,” In: Pediatric Ophthalmology and Strabismus, New York: Springer; 2003, pp. 125–43. doi: 10.1007/978-0-387-21753-6_8
[3] T. Haslwanter, “Mathematics of three-dimensional eye rotations,” Vision research, vol. 35, no. 12, pp. 1727–39, 1995. doi: 10.1016/0042-6989(94)00257-M
[4] E. Bayro-Corrochano, “Modeling the 3d kinematics of the eye in the geometric algebra framework,” Pattern recognition, vol. 36, no. 12, pp. 2993–3012, 2003. doi: 10.1016/S0031-3203(03)00180-8
[5] G. Cannata and M. Maggiali, “Models for the Design of Bioinspired Robot Eyes,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 27-44, 2008. doi: 10.1109/TRO.2007.906270
[6] X.Y. Wang, Y. Zhang, X.J. Fu, G.S. Xiang, “Design and kinematic analysis of a novel humanoid robot eye using pneumatic artificial muscles,” Journal of Bionic Engineering, vol. 5, no. 3, pp. 264–270, 2008. doi: 10.1016/S1672-6529(08)60034-7
[7] L. Luo, N. Koyama, K. Ogawa, H. Ishiguro, “Robotic eyes that express personality,” Advanced Robotics, vol.33, 2019. doi: 10.1080/01691864.2019.1588164
[8] L. Li, H. Godaba, H. Ren and J. Zhu, “Bioinspired Soft Actuators for Eyeball Motions in Humanoid Robots,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 100-108, 2019. doi: 10.1109/TMECH.2018.2875522
[9] M. M. Khan and C. Chen, “Design of a Single Cam Single Actuator Multiloop Eyeball Mechanism,” in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 2018, pp. 1143-1149. doi: 10.1109/HUMANOIDS.2018.8625069
[10] B. J. Chen, S. F Wen, G.H. Liu, Y.Y Lee, W. P. Shih, C. L. Dai, C. A. Dai, Y.C. Hu, “Humanoid eye robot with angle control and image registration,” in 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Phuket, 2011, pp. 1177-1182. doi: 10.1109/ROBIO.2011.6181447
[11] P. Boeder, “Co-operative action of extraocular muscles,” Br J Ophthalmol., vol. 46, no. 7, pp. 397–403, 1962. doi: 10.1136/bjo.46.7.397
[12] J. Miller, D. Pavlovski, I. Shaemeva, “Orbit 1.8 Gaze Mechanics Simulation - User’s Manual,” Eidactics, San Francisco, 1999 [Online]. Available: http://www.eidactics.com/projects/ooi. [Accessed: Oct.- 1-2018]
[13] J. P. Merlet. Parallel Robots. Netherlands: Springer, 2006.
[14] C. A. Trujillo, “Inverse kinematics of the eye,” in 1er. Congreso Internacional de Tecnologías Avanzadas de Mecatrónica, Diseño y Manufactura – AMDM, Paper TCA-ROB112, 2012.
[15] W. E. Krewson, “The action of the extraocular muscles: a method of vector-analysis with computations,” Transactions of the American Ophthalmological Society, vol. 48, pp. 443–86, 1950
[16] O. Bottema, B. Roth, Theoretical kinematics. Dover Publications Inc., 1990.
[17] J. M. McCarthy, Introduction to theoretical kinematics. MIT press, 1990.
[18] H. Mabie, C, Reinholtz, Mecanismos y dinámica de maquinaria. México: Limusa-Wiley, 2008.
[19] K. Hepp, V. Henn, “ISO-frequency curves of oculomotor neurons in the rhesus monkey,” Vision research, vol. 25, no. 4, pp. 493–499, 1985.