Published 2019-04-26
Keywords
- pronosupination,
- human arm rehabilitation,
- medical robotics
How to Cite
Abstract
Rehabilitation robotics is a tool to support rehabilitation therapist that reduces the patient’s recovery time and improve the exercises repeatability. Arm rehabilitation devices have been developed to perform the exercises in the horizontal plane; however, most devices do not consider arm pronosupination. This paper presents the design of a pronosupinator that can be mounted to the end effector of some existing devices. The pronosupinator consists of a sling and a cylinder that allows forearm rotation, this rotation can be: manual, the patient may rotate it; or automatic through a motor. The pronosupinator features, in combination with the arm rehabilitation devices, contribute to the improvement of rehabilitation therapies and reduces costs in general for the healthcare sector.
Downloads
References
[2] R. Newport, “Ventajas de la rehabilitación asistida mediante robot en la recuperación de las funciones motriz y visuoespacial en pacientes en fase de recuperación de un accidente cerebrovascular,” Rev. Esp. Geriatr. Gerontol., vol. 41, no. s2, pp. 66–73, 2007, doi: 10.1016/S0210-5705(09)71003-9.
[3] Instituto Mexicano del Seguro Social (IMMS), 2018. [Online]. Available: http://www.imss.gob.mx/transparencia/indicadores-estudios
[4] P. Loeza Magaña, “Introducción a la rehabilitación robótica para el tratamiento de la enfermedad vascular cerebral: revisión,” Rev. Mex. Med. Física y Rehabil., vol. 27, no. 2, pp. 44–48, 2016.
[5] Commission for Labor Cooperation, “Guide on work injuries (U.S)”, 2009.
[6] J. A. Mirallas Martínez, “Evidencia científica de los progresos en la rehabilitación de la enfermedad cerebrovascular,” Rehabilitación, vol. 38, no. 5, pp. 246–249, Dec. 2004, doi: 10.1016/S0048-7120(04)73468-4.
[7] R. Newport, “The benefits of assisted rehabilitation on the recovery of motor and visual function in individuals recovering form stroke,” Revista Española de Geriatría y Gerontología, vol. 41, no. 2, pp. 66-73, 2006. doi:10.1016/S0211-139X(06)73010-4
[8] NBIO research, “Robot Aupa”, 2018. [Online]. Available: http://nbio.umh.es/es/robot-aupa/.
[9] E. Mongan, “Personalized Robot Helpers Motivate Rehab Patients,” American associates Ben-Gurion University of the Negev, 2017. [Online]. Available: https://aabgu.org/personalized-robot-helpers-motivate-rehab-patients/
[10] P. Pérez Corrales, “Implementan robots humanoides para ayudar a niños en terapias de rehabilitación,” Tendencias Tecnológicas, 2016. [Online]. Available: https://www.tendencias21.net/Implementan-robots-humanoides-para-ayudar-a-ninos-en-terapias-de-rehabilitacion_a42470.html.
[11] Hocoma, “Armeo®Spring - Hocoma.” [Online]. Available: https://www.hocoma.com/solutions/armeo-spring/
[12] J. F. Ayala-Lozano et al., “Diseño mecánico de un exoesqueleto para rehabilitación de miembro superior Mechanical design of an exoskeleton for upper limb rehabilitation,” Rev. Colomb. Biotecnol, vol. 17, no. 1, pp. 79–90, 2015, doi: 10.15446/rev.colomb.biote.v17n1.44188.
[13] Hocoma, “Technical Data Lokomat®Pro.”, Switzerland, 2018. [Online]. Available: https://www.hocoma.com/solutions/lokomat/
[14] Interactive motion technologies, “InMotionArm”, USA, 2010. [Online]. Available: https://www.bioniklabs.com/products/inmotion-arm
[15] Berrett Technology, “Burt”, Newton USA, 2018. [Online]. Available: https://medical.barrett.com/
[16] J. M. Sabater, J. M. Azorín, C. Pérez, N. García, and M. Menchón, “Ayuda robótica para la rehabilitación de miembros superiores,” in 2do Congreso Internacional sobre Domótica, Robótica y Teleasistencia para Todos, 2007, p. 19.
[17] Commission for Labor Cooperation, “Guide on work injuries”, USA, 2009
[18] QAL Medical, “Pronation Supination Forearm CPM”, 2018. [Online]. Available: http://qalmedical.com/ps1-pronation-supination-cpm-device/
[19] J. A. Díez, A. Blanco, J. M. Catalán, F. Badesa, J. Sabater-Navarro, and N. Garcia, “Design of a Prono-Supination Mechanism for Activities of Daily Living,” in Biosystems and Biorobotics, 2nd ed., vol. 15, Segovia, 2017, pp. 531–535.
[20] R. E. Doran, “Orthosis for supination and pronation of the wrist,” Patent US6179799B1, 01-Feb-1999.
[21] R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, and W. Harwin, “Upper Limb Robot Mediated Stroke Therapy—GENTLE/s Approach,” Auton. Robots, vol. 15, no. 1, pp. 35–51, 2003, doi: 10.1023/A:1024436732030.
[22] E. Vergaro, M. Casadio, V. Squeri, P. Giannoni, P. Morasso, and V. Sanguineti, “Self-adaptive robot training of stroke survivors for continuous tracking movements,” J. Neuroeng. Rehabil., vol. 7, no. 1, p. 13, 2010, doi: 10.1186/1743-0003-7-13.
[23] M. J. Johnson et al., “Task-oriented and Purposeful Robot-Assisted Therapy,” in Rehabilitation Robotics, K. J. Wisneski, Ed. Rijeka: IntechOpen, 2007. doi: 10.5772/5163
[24] B. Chaparro-Rico, D. Cafolla, M. Ceccarelli, and E. Castillo-Castaneda, “Design and Simulation of an Assisting Mechanism for Arm Exercises BT - Advances in Italian Mechanism Science,” in Advances in Italian Mechanism Science, 47th ed., G. Boschetti and A. Gasparetto, Eds. Cham: Springer International Publishing, 2017, pp. 115–123.
[25] N. Hogan, H. I. Krebs, A. Sharon, and J. Charnnarong, “Interactive robotic therapist,” US Patent 5466213, 14-Nov-1995.